• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (05): 801-809.

• 计算机网络与信息安全 • 上一篇    下一篇

基于异常保持的弱监督学习网络入侵检测模型

谭郁松,王伟,蹇松雷,易超雄   

  1. (国防科技大学计算机学院,湖南 长沙 410073)
  • 收稿日期:2023-09-01 修回日期:2023-10-24 接受日期:2024-05-25 出版日期:2024-05-25 发布日期:2024-05-30
  • 基金资助:
    国家自然科学基金(U19A2060)

Weakly-supervised IDS with abnormal-preserving transformation learning

TAN Yu-song,WANG Wei,JIAN Song-lei,YI Chao-xiong   

  1. (College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2023-09-01 Revised:2023-10-24 Accepted:2024-05-25 Online:2024-05-25 Published:2024-05-30

摘要: 网络入侵检测系统对维护网络安全至关重要,目前针对只有较少异常标记网络数据的入侵检测场景的研究较少。基于数据的异常保持性,设计了基于异常保持的弱监督学习网络入侵检测模型WIDS-APL,该检测模型包含数据转换层、表征学习层、转换分类层和异常判别层4部分,利用一组可学习的编码器将样本映射到不同区域并压缩到超球体,利用异常样本的标签信息学习正常样本和异常样本的分类界限,得到样本的异常分数。在4个数据集上的测试结果表明了该模型的有效性和鲁棒性,相比4个主流算法,在 AUC-ROC值上分别提升了4.80%,5.96%,1.58%和1.73%,在AUC-PR性能上分别提升了15.03%,2.95%,4.71%和9.23%。

关键词: 网络入侵检测, 弱监督学习, 深度学习

Abstract: Network intrusion detection systems are crucial for maintaining network security, and there is currently limited research on intrusion detection scenarios with only a few abnormal markers of network data. This paper designs a weakly-supervised learning intrusion detection model, called WIDS-APL, based on the anomaly retention of data. The detection model consists of four parts: data transformation layer, representation learning layer, transformation classification layer, and anomaly discrimination layer. By using a set of learnable encoders to map samples to different regions and compress them into a hypersphere, the label information of abnormal samples is used to learn the classification boundaries of normal and abnormal samples, and the abnormal score of the samples is obtained. Testing the WIDS-APL system on four datasets demonstrates the effectiveness and robustness of the system, with improvements in the AUC-ROC values of 4.80%, 5.96%, 1.58%, and 1.73% respectively compared to other mainstream methods. Furthermore, there are enhancements of 15.03%, 2.95%, 4.71%, and 9.23% in AUC-PR performance. 

Key words: network intrusion detection, weakly-supervised learning, deep learning