• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于支持向量回归机的RFID室内定位研究

尹强,佐磊,何怡刚,刘东洋,李亚   

  1. (合肥工业大学电气与自动化工程学院,安徽 合肥 230009)
  • 收稿日期:2016-04-05 修回日期:2016-07-01 出版日期:2017-12-25 发布日期:2016-07-01
  • 基金资助:

    国家自然科学基金(61401139,51577046,51637004);教育部科学技术研究重大项目(313018);安徽省自然科学基金(1508085MF112);博士后基金(2014M561820);国家重点研发计划(2016YFF0102200)

RFID indoor localization based on
support vector regression

YIN Qiang,ZUO Lei,HE Yi-gang,LIU Dong-yang,LI Ya   

  1. (School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
  • Received:2016-04-05 Revised:2016-07-01 Online:2017-12-25 Published:2016-07-01

摘要:

基于接收信号强度的射频识别(RFID)定位是一种低成本、便于实现的室内定位方法,针对在RFID室内定位系统中使用参考标签法存在的小样本问题,提出一种基于支持向量回归机(SVR)的RFID室内定位算法。结合无源超高频RFID系统工作原理,在Matlab环境下,对比经典的LANDMARC方法,测试了基于支持向量回归机的定位算法性能,以及互耦效应、多径效应对该算法定位结果的影响。仿真结果表明,相较于LANDMARC方法,所提方法在不增加参考标签数量的情况下定位精度至少提高了25%。
 
 

关键词: RFID, 支持向量回归机, 互耦效应, 多径效应, 室内定位

Abstract:

Radio frequency identification (RFID) location based on received signal strength is a low cost, easy to implement indoor positioning method. In view of the small sample problem existing in the RFID indoor positioning system when using reference tags, we propose a RFID indoor localization algorithm based on support vector regression (SVR). Combined with the principle of passive ultra high frequency RFID system, the performance of the proposed algorithm is tested in MATLAB and then compared with that of the classical LANDMARC method. And the influence of mutual coupling effect and multipath effect on the positioning results of the algorithm is also tested. Simulation results show that the proposed method can improve positioning accuracy by at least 25% in comparison with the LANDMARC method while not increasing the number of reference tags.

Key words: