• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

基于时间感知排序的云服务QoS预测方法研究

蒋冰婷1,胡志刚1,马华2,姚景1   

  1. (1.中南大学软件学院,湖南 长沙 410075;2.湖南师范大学信息科学与工程学院,湖南 长沙 410081)
  • 收稿日期:2018-01-23 修回日期:2018-04-15 出版日期:2018-07-25 发布日期:2018-07-25
  • 基金资助:

    国家自然科学基金(61572525)

A cloud service QoS prediction method
 based on timeaware ranking

JIANG Bingting1,HU Zhigang1,MA Hua2,YAO Jing1   

  1. (1.School of Software,Central South University,Changsha 410075;
    2.College of Information Science and Engineering,Hunan Normal University,Changsha 410081,China)
  • Received:2018-01-23 Revised:2018-04-15 Online:2018-07-25 Published:2018-07-25

摘要:

随着云计算理论和技术的成熟,越来越多的云服务得到了蓬勃发展,如何建立高质量的云服务成为了云计算研究领域的一个关键难题。服务质量QoS排序为用户从一系列功能相似的云服务候选者中挑选最优云服务提供了非常有价值的信息。为了获得云服务的QoS值,就需要调用真实的候选云服务。为了避免时间消耗和昂贵的资源浪费,提出了一种基于时间感知排序的云服务QoS预测方法。不同于传统的QoS值预测,基于QoS排序相似度的预测考虑为特定用户检测服务的排序。分时段按权计算出排序相似度,结合时间偏好合成相似度的前k位用户,用来提供信息支持QoS的缺失预测。在WSDream真实数据集进行的实验研究表明,基于时间感知排序的云服务QoS预测方法有更好的预测精度。

关键词: 云服务, QoS排序, 时间感知, 时间偏好

Abstract:

With the maturity of cloud computing theories and technologies, more and more cloud services have been gaining enormous momentum, so how to establish highquality cloud services has become a critical problem in the field of cloud computing. QoS rankings provide users with valuable information for making optimal cloud service selection from a set of functionally equivalent service candidates. To obtain QoS values of the cloud service, it is indispensable to invoking the realworld candidates of the cloud service. In order to avoid huge time consumption and expensive resource waste, we propose a QoS prediction approach based on timeaware ranking. Unlike traditional QoS value prediction, the proposed prediction method based on QoS ranking similarity can examine the order of services for a particular user. The ranking similarity is calculated by timeweight, and combining with time preference for synthetic similarity the topk neighbours are selected to provide QoS information support for the evaluation. Experiments based on WSDream, a realworld dataset, show that the QoS prediction method based on timeaware ranking has better prediction accuracy.

 

Key words: cloud service, QoS ranking, timeaware, timepreference