摘要:
云数据中心虚拟机的动态整合需要跟踪服务器的运行状态,而服务器的运行状态会受到数据中心负载变化的影响,现有的CPU使用率预测方法大都只关注当前服务器的CPU利用率变化。提出了一个基于Kalman滤波的CPU使用率预测模型,建立了基于所有服务器CPU使用率变化系数的数据中心负载变化模型,详细描述了基于Kalman滤波的CPU使用率预测方法,讨论了云数据中心的能耗和性能评价指标。最后,为了验证基于Kalman滤波的CPU使用率预测算法的有效性,在CloudSim仿真系统和PlanetLab的五个数据集上进行了实验。实验结果表明,Kalman滤波能够较好地反映服务器CPU使用率的变化趋势,有效地降低数据中心的能耗,并保持较好的计算性能。
何丽,汤莉. 基于Kalman滤波的云数据中心能耗和性能优化[J]. 计算机工程与科学.
HE Li,TANG Li.
Energy and performance optimization based on
Kalman filtering in the cloud data center
[J]. Computer Engineering & Science.