• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于栈式自编码的上海地铁短时流量预测

徐逸之1,2,彭玲1,林晖1,2,李祥1,2   

  1. (1.中国科学院遥感与数字地球研究所,北京100010;2.中国科学院大学,北京100049)
  • 收稿日期:2017-01-06 修回日期:2017-04-25 出版日期:2018-07-25 发布日期:2018-07-25
  • 基金资助:

    国家科技支撑计划(2015BAJ02B00)

Short-term passenger flow prediction in Shanghai
subway system based on stacked autoencoder

XU Yizhi1,2,PENG Ling1,LIN Hui1,2,LI Xiang1,2   

  1. (1.Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100010;
    2.University of Chinese Academy of Sciences,Beijing 100049,China)
  • Received:2017-01-06 Revised:2017-04-25 Online:2018-07-25 Published:2018-07-25

摘要:

城市公共交通网每时每刻都承载巨大的客流量,客流量的增多为公共交通网和交通智能调度带来了巨大的压力。地铁站点短时的客流预测是智能地铁调度系统中重要的决策基础与技术支持。利用历史刷卡数据,提出了一种基于深度学习的地铁短时客流量预测方法,基于栈式自编码器构建深度神经网络模型,采用自下而上逐层非监督预训练,在预训练结束之后,采用反向传播BP算法自上而下来微调整个网络的参数。利用上海一个月范围内的地铁刷卡记录数据进行实验测试,实验结果优于小波神经网络WaveletNN与自回归移动平均模型ARIMA。

关键词: 深度学习, 栈式自编码, 地铁客流量, 短时预测

Abstract:

Urban public traffic networks have been carrying huge passenger flow all the time. And the increase of passenger flow brings great pressure to public traffic networks and traffic intelligent dispatch. Shortterm passenger flow forecasting on subway station provides an important technical support for decisionmaking in the intelligent subway dispatch system. With the historical data of metro cards, we propose a shortterm passenger flow prediction method based on deep learning which is able to extract inherent and deep features from data. So a deep learning network model is built based on stacked autoencoder (SAE) and we pretrain the model in a downtop fashion. After pretraining, we use the BP algorithm to finetune and update the whole network’s parameters in a topdown fashion. Results on the data of metro cards for a month period of Shanghai subway show that the proposed method outperforms  the wavelet neural network (waveletNN) and the autoregressive integrated moving average (ARIMA) in terms of prediction performance.
 

Key words: deep learning, stacked autoencoder, subway passenger flow, shortterm prediction