摘要:
为构建精确的微带线滤波器神经网络模型,提出一种结合自适应遗传算法和改进粒子群算法的混合算法。在自适应遗传算法中,构造二次型选择策略以提高优秀个体的复制概率,加快收敛到初始全局最优解;利用粒子群算法良好的局部搜索能力,在标准粒子群算法的位置迭代公式中引入高斯扰动项,以克服收敛速度慢和早熟收敛的缺点,提高搜索全局最优解的可能性。通过对测试函数仿真,验证改进算法的可行性。最后将混合算法用于优化神经网络参数,建立平行耦合微带线滤波器模型。结果表明,滤波器参数S21和S11的均方根误差至少减小18.22%与12.68%,微带滤波器建模精度得到提高,验证了该算法对滤波器建模的有效性和可靠性。
南敬昌,陆亚男,高明明. 基于改进混合算法优化RBF网络的滤波器建模[J]. 计算机工程与科学.
NAN Jingchang,LU Yanan,GAO Mingming.
An improved hybrid algorithm for
optimizing RBF neural network filter modeling
[J]. Computer Engineering & Science.