• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (04): 713-719.

• 论文 • 上一篇    下一篇

改进人工蜂群算法优化RBF神经网络的短时交通流预测

黄文明,徐双双,邓珍荣,雷茜茜   

  1. (桂林电子科技大学计算机科学与工程学院,广西 桂林 541004)
  • 收稿日期:2015-02-25 修回日期:2015-04-16 出版日期:2016-04-25 发布日期:2016-04-25

Shortterm traffic flow prediction of optimized RBF neural
networks based on the modified ABC algorithm        

HUANG Wenming,XU Shuangshuang,DENG Zhenrong,LEI Qianqian   

  1. (School of Computer Science and Engineering,Guilin University of Electronic Technology,Guilin 541000,China)
  • Received:2015-02-25 Revised:2015-04-16 Online:2016-04-25 Published:2016-04-25

摘要:

为了提高径向基函数RBF神经网络预测模型对短时交通流的预测准确性,提出了一种基于改进人工蜂群算法优化RBF神经网络的短时交通流预测模型。利用改进人工蜂群算法确定RBF网络隐含层的中心值以及隐含层单元数,然后训练改进的人工蜂群算法RBF神经网络预测模型,并将其应用到某城市4天的短时交通流量数据的验证。将实验结果与传统RBF神经网络预测模型、BP神经网络预测模型和小波神经网络预测模型进行了比较。对比结果表明,该方法对短时交通流具有更高的预测准确性。

关键词: 交通流预测, RBF神经网络, BP神经网络, 小波神经网络, 人工蜂群算法

Abstract:

In order to improve the prediction accuracy of radial basis function (RBF) neural network model for shortterm traffic flow, we propose a prediction model for shortterm traffic flow of optimized RBF neural networks based on the modified artificial bee colony (ABC) algorithm. The modified ABC algorithm is used to confirm center value and unit numbers of the hidden layers of the RBF neural networks. Then the modified RBF neural network prediction model is trained, and the efficiency of the proposed prediction model is tested through simulations on the shortterm traffic flow data of a city in four days. Experimental results of the proposed model are compared with the traditional RBF neural network model, the BP neural network model and the wavelet neural network model, which  verify the higher prediction accuracy of the proposed method.

Key words: traffic flow prediction;RBF neural network;BP neural network;wavelet neural network;artificial bee colony algorithm