J4 ›› 2016, Vol. 38 ›› Issue (04): 713-719.
黄文明,徐双双,邓珍荣,雷茜茜
HUANG Wenming,XU Shuangshuang,DENG Zhenrong,LEI Qianqian
摘要:
为了提高径向基函数RBF神经网络预测模型对短时交通流的预测准确性,提出了一种基于改进人工蜂群算法优化RBF神经网络的短时交通流预测模型。利用改进人工蜂群算法确定RBF网络隐含层的中心值以及隐含层单元数,然后训练改进的人工蜂群算法RBF神经网络预测模型,并将其应用到某城市4天的短时交通流量数据的验证。将实验结果与传统RBF神经网络预测模型、BP神经网络预测模型和小波神经网络预测模型进行了比较。对比结果表明,该方法对短时交通流具有更高的预测准确性。