摘要:
近年来新浪微博已成为国内重要的社交媒体平台之一,然而该类平台开放的匿名环境给谣言提供了滋生、传播的温床,造谣传谣给社会带来的消极影响不容忽视。传统的基于特征的谣言检测研究主要关注消息文本、发布用户、传播等方面的静态扁平特征,忽略了对消息传播演化结构和传播群体反应等方面的研究。针对此问题,首先将消息传播的级联模型引入标记传播树(LPT)模型中,提出改进的标记信息级联传播树模型(CA-LPT);在此模型下提出一种动态度量用户影响力的方法;然后提出10个新特征以扩充已有的静态扁平特征集,再利用基于随机通路图核和RBF核的混合核支持向量机(SVM)进行谣言检测;最后通过基于新浪微博真实数据集的实验分析,验证了所提方法能提升谣言检测的性能。
蔡国永,毕梦莹,刘建兴. 基于标记信息级联传播树特征的谣言检测新方法[J]. 计算机工程与科学.
CAI Guoyong,BI Mengying,LIU Jianxing.
A novel rumor detection method based on
features of labeled cascade propagation tree
[J]. Computer Engineering & Science.