• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 计算机网络与信息安全 • 上一篇    下一篇

基于模糊神经网络的稳定AODV协议改进方案

黄保华1,莫家威2,吕琦1   

  1. (1.广西大学计算机与电子信息学院,广西 南宁 530004;2.广西科技大学鹿山学院电气与计算机工程系,广西 柳州 545005)
  • 收稿日期:2017-08-16 修回日期:2018-02-28 出版日期:2018-11-25 发布日期:2018-11-25
  • 基金资助:

    国家自然科学基金(61262072)

An improved stable AODV protocol
scheme based on fuzzy neural networks

HUANG Baohua1,MO Jiawei2,L Qi1   

  1. (1.School of Computer and Electronic Information,Guangxi University,Nanning 530004;
    2.Department of Electrical and Computer Engineering,Lushan College,
    Guangxi University of Science and Technology,Liuzhou 545005,China)
  • Received:2017-08-16 Revised:2018-02-28 Online:2018-11-25 Published:2018-11-25

摘要:

车载自组网的重要特征之一是节点的高移动性。针对节点的自由移动导致链路频繁断裂这一问题,在路由协议中选择稳定链路进行数据传输尤为重要。提出了一种具有链路稳定性的按需距离矢量路由协议(AODV)改进方案,即GF-AODV(AODV with GASAFNN)。该方案在路由发起和选择阶段,使用模糊神经网络对节点信息进行计算,得到节点稳定度以评估链路质量,并均衡考虑链路稳定性与跳数,选出稳定且跳数较小的路径。在路由维护阶段,针对实际环境使用遗传模拟退火算法对模糊神经网络的参数进行实时优化,以确保计算出的节点稳定度符合实际情况。实验表明,GF-AODV相对于AODV在平均时延、包投递率、路由开销等方面均有所改善。

关键词: 车载自组网, 链路稳定性, 模糊神经网络, AODV协议

Abstract:

One of the important characteristics of vehicular ad hoc networks is the high mobility of nodes. It is significant to select stable links for transmitting data in routing protocols to solve the problem of frequent link breakage caused by free movement of nodes. To solve this problem, we propose an improved ondemand distance vector routing protocol (AODV) scheme with link stability, namely GFAODV (AODV with GASAFNN). The algorithm uses fuzzy neural networks to calculate the node information in the initialization and selection stages to get node stability. Then we evaluate the link quality, and select the stable link which has fewest hops based on link stability and hop count. In the routing maintenance phase, the parameters of the fuzzy neural network are optimized in real time according to the actual environment by using the genetic simulated annealing algorithm, which guarantees the consistency between calculated node stability and the actual situation. Experiments show that the GFAODV routing protocol outperforms the AODV in terms of average delay, packet delivery rate and routing overhead.

 

 

Key words: vehicular ad hoc networks, link stability, fuzzy neural network, AODV protocol