• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于灰色多元线性回归融合模型的故障率预测

郭利进1,何西硕1,2,3,徐新喜2,石梅生2,王济虎2   

  1. (1.天津工业大学电气工程与自动化学院,天津 300387;2.军事医学科学院卫生装备研究所,天津 300161;
    3.天津工业大学天津市电工电能新技术重点实验室,天津 300387)
     
  • 收稿日期:2017-03-27 修回日期:2017-08-15 出版日期:2018-11-25 发布日期:2018-11-25
  • 基金资助:

    天津市应用基础与前沿技术项目(15JCYBJC47800);全军“十二五”重大项目(AWS13Z006)

Failure rate prediction based on
grey multiple linear regression model

GUO Lijin1,HE Xishuo1,2,3,XU Xinxi2,SHI Meisheng2,WANG Jihu3   

  1. (1.School of Electrical Engineering and Automation,Tianjin Polytechnic University,Tianjin 300387;
    2.Institute of Medical Equipment,Academy of Military Medical Sciences,Tianjin 300161;
    3.Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology,
    Tianjin Polytechnic University,Tianjin 300387,China)
  • Received:2017-03-27 Revised:2017-08-15 Online:2018-11-25 Published:2018-11-25

摘要:

为预测在设备使用年份期间的制氧系统故障率,提出灰色多元线性回归融合模型的新方法。该方法首先求出制氧系统各设备故障率的GM(1,1)模型;然后计算出制氧系统故障率、制氧系统各设备故障率与设备使用年份相关关系模型,并且将制氧系统各设备故障率的GM(1,1)模型代入该关系模型中;最后利用最小二乘法求出待定参数。通过对制氧系统故障率的预测分析表明,灰色多元线性回归融合模型在故障率预测精度上优于单一的灰色模型和线性回归模型,且不要求提供的历史数据具有典型的分布规律。该模型的预测结果可为制氧系统的维修工作提供决策依据。
 

关键词: GM(1, 1)模型, 多元线性回归模型, 灰色多元线性回归, 故障率

Abstract:

We propose a grey multiple linear regression model to predict the failure rate of the oxygen system during the using year of oxygen equipment. Firstly, we find out the GM (1,1) model of the failure rate of the oxygen system equipment. Secondly, we calculate the relationship model of the oxygen system failure rate, oxygen equipment failure rate and the years of equipment in use, and plug the GM (1,1) model of oxygen equipment failure rate into the relational model. Finally, we calculate undetermined parameters by using the least square method. We analyze the failure rate prediction of the oxygen system, and the results show that the grey multiple linear regression model is superior to both the individual GM model and linear regression model in terms of prediction accuracy of failure rate. Moreover, the historical data in use does not require a typical distribution. The prediction results of the model can provide a decisionmaking basis for oxygen system maintenance work.
 

Key words: GM (1,1) model, multiple linear regression model, grey multiple linear regression, failure rate