• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 人工智能与数据挖掘 • 上一篇    下一篇

基于混沌灰狼优化算法的SVM分类器研究

王志华,罗齐,刘绍廷   

  1. (郑州大学软件与应用科技学院,河南 郑州 450002)
  • 收稿日期:2017-07-08 修回日期:2017-11-09 出版日期:2018-11-25 发布日期:2018-11-25
  • 基金资助:

    国家社会科学基金(15BTQ064);河南省科技攻关项目(182102210007)

An SVM classifier based on chaotic gray
wolf optimization algorithm

WANG Zhihua,LUO Qi,LIU Shaoting   

  1. (School of Software and Applied Science and Technology,Zhengzhou University,Zhengzhou  450002,China)
  • Received:2017-07-08 Revised:2017-11-09 Online:2018-11-25 Published:2018-11-25

摘要:

支持向量机(SVM)是在分类问题下建立的一个运算小型数据集,可实现非线性高纬度分类,有很好的扩展能力。但是,在传统SVM的训练过程中,SVM运算结果的好坏与参数选择关系密切,而且目前使用的参数选择算法有很多缺陷。因此,针对上述问题,在灰狼算法(GWO)中加入混沌序列,改变狼群初始分布规律,构建混沌灰狼优化算法(CGWO),增强狼群分布均匀性以及狼群查找遍历性,极大提高GWO算法的运算速度和运算准确性,最终更好地优化SVM。使用Mirjalili提供的开源数据与原有数据混合作为向量机的测试集进行实验对比分析,实验结果表明,CGWO算法具有明显的性能提高;用混沌灰狼算法优化的 SVM和灰狼优化算法SVM、人工蜂群SVM、万有引力搜索SVM以及传统算法优化的 SVM相比,其运算准确率更高、误差更低、花费时间更少。

关键词: 数据分类, 混沌, 灰狼优化算法, 支持向量机, 参数选择

Abstract:

The support vector machine (SVM) is a small computational data set established under the classification problem, which can achieve nonlinear highlatitude classification with good scalability. However, during the training process of traditional SVM, the results of SVM computation are closely related to parameter selection, and the parameter selection algorithms currently in use have a number of defects. Aiming at above problems, we introduce the gray wolf algorithm (GWO) into the chaotic sequence, change the initial distribution of wolves, and propose a chaotic gray wolf optimization algorithm (CGWO), which can improve the uniformity of wolf distribution and the ergodicity of wolf searching, thus greatly enhancing the computing speed and accuracy of the GWO algorithm, and ultimately achieve better SVM optimization. Comparative experiments on the open source data provided by Mirjalili mixed with the original data as the test set of the vector machine shows that the CGWO algorithm has obvious performance improvement, and it outperforms the GWO algorithm,  artificial bee colony, gravitational search algorithm and SVM optimized by traditional optimization algorithms, with higher computation accuracy  lower error and less time.

 

 

Key words: data classification;chaos, gray wolf optimizer, SVM;parameter selection