摘要:
微博数据量庞大且微博文本的字符数少、特征稀疏,为提高检索精度,提出一种融合BTM和图论的微博检索模型,通过词汇语义相关度计算微博文本中带有标签的特征相关度,构建bi-term主题模型,用JSD距离计算映射到该模型中短文本的词对相关度,抽取CN-DBpedia中实体及图结构,再使用SimRank算法计算图结构中实体间的相关度。综上3种相关度为该模型最终相关度。最后使用新浪微博数据集进行检索实验,实验结果表明:对比于融合隐含狄利克雷分布算法与图论的检索模型和基于开放数据关联和图论方法系统模型,新模型在MAP、准确率和召回率上性能有明显提高,说明该模型具有较优的检索性能。
蔡晨1,2,罗可1,2 . 融合BTM和图论的微博检索模型[J]. 计算机工程与科学.
CAI Chen1,2,LUO Ke1,2. A microblog retrieval model combining BTM and graph theory[J]. Computer Engineering & Science.