• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 高性能计算 • 上一篇    下一篇

负载均衡的主导资源公平分配算法

刘梓璇,周建涛   

  1. (内蒙古大学计算机学院,内蒙古 呼和浩特 010021)
  • 收稿日期:2018-10-08 修回日期:2018-11-30 出版日期:2019-09-25 发布日期:2019-09-25
  • 基金资助:

    国家自然科学基金(61662054,61262082);内蒙古自然科学基金(2015MS0608);内蒙古云计算与软件工程科技创新团队;内蒙古应用技术研究与开发资金项目;
    内蒙古‘云计算与服务软件’工程实验室和内蒙古‘大数据分析技术’工程实验室的资助

A fair load-balanced dominant
resource  allocation algorithm
 

LIU Zi-xuan,ZHOU Jian-tao   

  1. (College of Computer Science,Inner Mongolia University,Hohht 010021,China)
  • Received:2018-10-08 Revised:2018-11-30 Online:2019-09-25 Published:2019-09-25

摘要:

随着使用云计算并行且可靠地处理计算问题成为一种趋势,各种云计算平台应运而生,在这些平台中,保证多种资源调度策略的公平性非常重要。主导资源公平
分配算法DRF有效地实现了多种资源环境中的公平分配,但在资源分配过程中容易出现集群负载不均的情况。因此,提出在使用DRF算法分配资源过程中,通过集群中各节点的资源利用率情况对节点进行K-means聚类分析,根据聚类结果将资源分配给任务来提高集群负载均衡的能力。基于CloudSim 4.0实现了改进DRF算法的仿真实验,实验结果表明,负载均衡的DRF算法比原始的DRF算法以及基于层次分析法(AHP)改进的DRF算法更能有效地改善集群整体的负载均衡。

关键词: 云计算, K-means聚类, 主导资源公平分配, 负载均衡

Abstract:

With the trend of using cloud computing to handle computation problems concurrently and reliably, various cloud computing platforms have emerged. In cloud computing, the fairness of multiple resource scheduling strategies is very important. Dominant resource fairness (DRF) can effectively implement the fairness in multiple resource environments, however, it can introduce uneven cluster load in the process of resource allocation. Therefore, we propose  a load-balanced dominant resource fairness allocation algorithm. It uses the DRF algorithm to allocate resources, perform K-means clustering on the slaves according to the resource utilization of each slave in the cluster, and allocate the resources to the tasks according to the clustering results to improve the load balance of the cluster. Simulations of the improved DRF algorithm are implemented on CloudSim4.0. Experimental results show that the proposed load-balanced DRF algorithm can  improve the load balancing of the cluster more effective than the original DRF algorithm and the improved DRF algorithm based on analytic hierarchy process (AHP).
 

Key words: cloud computing;K-means clustering;fair dominant resource , allocation;load balance