摘要:
针对在蛋白质相互作用网络上的关键蛋白质识别只关注拓扑特性,蛋白质相互作用数据中存在较高比例的假阳性数据以及基于复合物信息的关键蛋白质识别算法对节点的邻域信息和复合物的挖掘对关键蛋白质的识别影响效果考虑不够全面等导致的识别准确率和特异性不高的问题,提出一种基于复合物参与度和密度的关键蛋白质预测算法PEC。首先融合GO注释信息和边聚集系数构造加权PPI网络,克服假阳性对实验结果的影响;基于蛋白质相互作用的边权重,构造相似度矩阵,设计特征值间的最大本征差值来自动确定划分数目K,同时根据加权网络中的蛋白质节点度来选取K个初始聚类中心,进而利用谱聚类结合模糊C-means聚类算法实现复合物的挖掘,提高聚类的准确率,降低数据的维数;其次基于蛋白质节点的复合物参与度以及节点邻域子图密度,设计出关键节点的关键性得分。在DIP和Krogan 2个数据集上,将PEC与
DC、BC、CC、SC、IC、PeC、WDC、LIDC、LBCC和UC 10种经典算法相比,实验结果表明,PEC算法能够识别出更多的关键蛋白质,且聚类结果的准确率和特异性较高。
毛伊敏,刘银萍. 基于复合物参与度和密度的关键蛋白质预测[J]. 计算机工程与科学.
MAO Yi-min,LIU Yin-ping.
An essential proteins prediction algorithm based on
participation degree in protein complex and density
[J]. Computer Engineering & Science.