• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于SHN模型的商品图像检索方法

贺周雨1,冯旭鹏2,刘利军1,黄青松1,3   

  1. (1.昆明理工大学信息工程与自动化学院,云南 昆明 650500;2.昆明理工大学信息化建设管理中心,云南 昆明 650500;
    3.昆明理工大学云南省计算机技术应用重点实验室,云南 昆明 650500)
  • 收稿日期:2019-03-27 修回日期:2019-05-21 出版日期:2019-11-25 发布日期:2019-11-25
  • 基金资助:

    国家自然科学基金(81860318,81560296)

A product image retrieval method
based on SHN model

HE Zhou-yu1,FENG Xu-peng2,LIU Li-jun1,HUANG Qing-song1,3   

  1. (1.Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500;
    2.Information Technology Center,Kunming University of Science and Technology,Kunming 650500;
    3.Yunnan Key Laboratory of Computer Technology Applications,
    Kunming  University of Science and Technology,Kunming 650500,China)
  • Received:2019-03-27 Revised:2019-05-21 Online:2019-11-25 Published:2019-11-25

摘要:

近年来电子商务行业快速发展,如何通过图像信息在庞大的商品库中快速、准确地找到所需要的商品具有重要的应用价值。针对商品图像数据规模大、类间数据量差异大、被拍摄商品的尺度相差较大以及压缩图像会损失掉细节信息的特点,提出了一个融合金字塔池化策略与哈希学习的空间金字塔池化哈希网络SHN模型,作为本文商品图像检索方法的特征提取部分。为了提高模型对图像形变的鲁棒性,采用金字塔池化策略实现多尺度特征融合;为了使学习到的哈希码具有更好的独立性,使用量化误差损失及附加权值对哈希编码进行约束。本文方法保留了原始图像信息,解决了图像尺度变化所带来的负面影响,通过哈希编码能够实现快速的商品图像检索,商品图像检索实验中的mAP值达到91.986 3%,完成一次检索所用时间为0.034 856 s,检索性能优于当前主流方法。
 

关键词: 商品图像检索, 深度卷积神经网络, 多尺度池化, 哈希学习

Abstract:

In recent years, with the rapid development of the e-commerce industry, how to quickly and accurately find the required goods through image information in the huge product library has important application value.Aiming at the characteristics such as the large scale of product image data, the large difference of data between classes, the large difference between the scales of photographed products and the loss of detailed information in compressed images, an Spatial pyramid pooling -Hash-Net (SHN)model combining spatial pyramid pooling strategy and hash learning is proposed as the feature extraction part of the product image retrieval method. In order to improve the robustness of the model to image deformation, the spatial pyramid pooling strategy is adopted to achieve multi-scale feature fusion. In order to make the learned hash code have better independence, the quantization error loss and additional weights are used to constrain the hash code.The method preserves the original image information and solves the negative effects caused by image scale changes, and it can realize fast product image retrieval through hash coding.The experimental results show that the mAP value of this method reaches 91.986 3%, and the time for completing a search is 0.034 856 s. The image retrieval performance is better than the current mainstream methods.
 

Key words: product image retrieval, deep convolutional neural networks, multi-scale pooling, hash learning