熊菊霞1,2,3,吴尽昭1,2,3
摘要:
针对异构复杂信息网络中存在高维冗余的敏感数据流,可挖掘数据特征形成概率较低,导致需要多次挖掘、挖掘内存占用高、挖掘精度低、时间长的问题,提出基于最大类间散度的网络敏感数据流动态挖掘方法。将敏感数据的差异最大化间隔作为分类基础,得到网络敏感数据的最大类间散度,在遗传迭代状态下确定最优散度迭代函数,对迭代函数进行挖掘特征优选,得出动态可挖掘特征。对可挖掘特征进行聚类分析,挖掘得到数据隐藏信息模式,并对其进行评价,将合理的信息模式进行知识表示,从而实现异构复杂信息网络敏感数据流动态挖掘。实验结果表明,所提方法可挖掘特征形成概率高达98%,labels标记与实际值较为接近。所提方法挖掘精度高,且运行时间较短、内存占用率低。