摘要:
YOLOv3是一种单步目标检测算法,不需要产生区域候选网络(RPN)来提取目标信息,相对于双步目标检测算法具有更快的检测速度。但是,现有算法在小目标检测上存在精度不高和漏检现象的问题,为此提出了一种基于YOLOv3算法的训练集优化和图层处理的检测方法。首先在标准数据集VOC2007+2012和自建的举手行为数据集上采用K-means算法做聚类分析,以得到适应数据集训练尺寸的anchor大小;然后通过调整训练参数及选择合理的标签标注方式进行训练;最后对输入图像进行图层处理并进行目标检测。实验结果表明,聚类分析后VOC2007验证集的平均准确度(mAP)提高了14%,并有效解决了原算法在检测过程中较高卷积层上感受野小的问题,从而使YOLOv3算法在小目标物体的检测上精度提高,漏检率也相对下降。
高星1,刘剑飞1,郝禄国2,董琪琪1. 基于YOLOv3算法的训练集优化和检测方法的研究[J]. 计算机工程与科学.
GAO Xing1,LIU Jian-fei1,HAO Lu-guo2,DONG Qi-qi1.
A training set optimization and detection
method based on YOLOv3 algorithm
[J]. Computer Engineering & Science.