• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于循环生成对抗网络的图像风格迁移

彭晏飞,王恺欣,梅金业,桑雨,訾玲玲   

  1. (辽宁工程技术大学电子与信息工程学院,辽宁 葫芦岛 125105)
  • 收稿日期:2019-10-31 修回日期:2019-12-11 出版日期:2020-04-25 发布日期:2020-04-25
  • 基金资助:

    国家自然科学基金(61602226,61702241);辽宁省教育厅高等学校基本科研项目(LJ2017FBL004)

Image style migration based on
cycle generative adversarial networks
 

PENG Yan-fei,Wang Kai-xin,Mei Jin-ye,SANG Yu,ZI Ling-ling   

  1. (School of Electronic and Information Engineering,Liaoning Technical University,Huludao 125105,China)
  • Received:2019-10-31 Revised:2019-12-11 Online:2020-04-25 Published:2020-04-25

摘要:

图像风格迁移是指将学习到的油画图像风格应用到其他图像上,让图像拥有油画的风格,当前生成对抗网络已被广泛应用到图像风格迁移中。针对循环生成对抗网络CycleGAN在处理图像时纹理清晰度不高的问题,提出了加入局部二值模式LBP算法的方法,将LBP算法加入生成对抗网络的生成器中,增强了循环对抗生成网络提取图像纹理特征内容的效果。针对生成图像产生噪声的问题,在损失函数中加入Total Variation Loss来约束噪声。实验结果表明,循环生成对抗网络加入LBP算法和Total Variation Loss后能提高生成图像的质量,使之具有更好的视觉效果。
 

关键词: 图像风格迁移, 循环生成对抗网络, 局部二值模式, Total Variation Loss

Abstract:

Image style migration refers to learning the style of oil painting pictures and applying the learned style to other pictures to make the pictures have the style of oil painting. The current methods based on generative adversarial networks have been widely used in image style migration. Aiming at the problem that Cycle Generative Adversarial Networks (CycleGAN) do not have high texture definition when processing images, a method of adding a Local Binary Pattern (LBP) algorithm is proposed. The LBP algorithm is added into the generation model of CycleGAN to enhance the extraction of image texture features by CycleGAN. Aiming at the problem of noise in the generated images, Total Variation Loss is added into the loss function to constrain the noise. The experimental results show that the quality of the generated images can be improved by adding LBP algorithm and Total Variation Loss, and the generated images have better visual effects.
 

Key words: image style migration, CycleGAN, local binary pattern (LBP);Total Variation Loss