• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 图形与图像 • 上一篇    下一篇

基于深度可分离卷积的地铁隧道巡检视频分析

孙明华,杨媛,李渊博   

  1. (西安理工大学自动化与信息工程学院,陕西 西安 710048)
  • 收稿日期:2019-10-31 修回日期:2019-12-11 出版日期:2020-04-25 发布日期:2020-04-25
  • 基金资助:

    国家自然科学基金(51477138)

Video analysis of subway tunnel inspection
 based on deep separable convolution

SUN Ming-hua,YANG Yuan,LI Yuan-bo   

  1. (School of Automation & Information Engineering,Xi’an University of Technology,Xi’an 710048,China)
  • Received:2019-10-31 Revised:2019-12-11 Online:2020-04-25 Published:2020-04-25

摘要:

地铁隧道安全目前主要依靠地铁轨道巡检员在轨道无车时人工巡轨检查,这种方法速度慢、工作效率低,而且巡检效果完全依赖于轨道巡检员的经验和状态。针对这一问题,提出了一种基于深度可分离卷积的地铁隧道巡检视频异常报警系统,该系统使用提出的SubwayNet卷积神经网络完成对巡检视频图像的分类。利用制作的地铁隧道巡检数据集对构建的卷积神经网络进行训练并保存模型,制作了图形用户界面并加入声音报警的功能,最后将程序文件打包为可执行文件。实验结果表明,该系统的分类准确率能够达到96%,速度能够达到52 fps,满足对视频实时、准确分析的要求。

 

关键词: 地铁隧道巡检, 视频分析系统, 深度可分离卷积, 卷积神经网络, 图像分类

Abstract:

Currently, the safety of subway tunnels mainly relies on the manual track inspection of subway track inspectors when there are no trains on the track. This method is slow and inefficient, and the inspection results are completely dependent on the experience and status of the track inspector. Aiming at this problem, a video anomaly alarm system of subway tunnel inspection based on deep separable convolution is proposed, this system uses the proposed SubwayNet convolutional neural network to complete the classification of inspection video images. The built-in convolutional neural network is trained and saved by using the produced subway tunnel inspection dataset. The graphical user interface is created and the alarm function is added. Finally, the program files are packaged into an executable file. The experimental results show that the classification accuracy of the system can reach 96%, and the speed can reach 52 frames/second, which meets the requirements of real-time and accurate analysis of video.
 

Key words: subway tunnel inspection, video analysis system, deep separable convolution, convolutio- nal neural network, image classification