• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (11): 2030-2036.

• 图形与图像 • 上一篇    下一篇

基于深度残差网络和GRU的SqueezeNet模型的交通路标识别

霍爱清,张文乐,李浩平   

  1. (西安石油大学电子工程学院,陕西 西安 710065)
  • 收稿日期:2019-12-18 修回日期:2020-04-16 接受日期:2020-11-25 出版日期:2020-11-25 发布日期:2020-11-30
  • 基金资助:
    陕西省教育厅基金(17JS108);西安石油大学研究生创新与实践能力培养项目(YCS18213084);陕西省科技厅一般工业项目(2020GY152)

Traffic road sign recognition based on SqueezeNet model with deep  residual network and GRU

HUO Aiqing,ZHANG Wenle,LI Haoping   

  1. (School of Electronic Engineering,Xi’an Shiyou University,Xi’an 710065,China)
  • Received:2019-12-18 Revised:2020-04-16 Accepted:2020-11-25 Online:2020-11-25 Published:2020-11-30

摘要: 现有的交通路标识别方法都是基于卷积神经网络的,随着网络层数的增加,准确率会提高,但也出现了效率降低、参数量增加等问题。为此,提出结合深度残差网络和GRU网络的改进SqueezeNet模型(SqueezeNetIRGRU)。该模型采用ELU函数作为激活函数,以提高学习效率;引入深度残差网络,以避免网络太深时梯度消失的情况;利用GRU神经网络能够记忆过去的重要特征来保证模型的稳定性。在CIFIR10和GTSRB数据集上进行了实验,其识别准确率分别达到99.13%和88.25%以上。实验结果表明,SqueezeNetIRGRU模型不仅大幅度降低了参数量,其收敛性、稳定性和召回率也都优于其他网络模型的。


关键词: SqueezeNet, GRU神经网络, 深度残差网络, 识别准确率, 稳定性

Abstract: Existing traffic road sign recognition methods are all based on convolutional neural networks. As the number of the model network layers increases, the recognition accuracy will also be improved, but there are still some problems such as the reduction of efficiency and the increase of the number of parameters. Therefore, an improved SqueezeNet model combining deep residual network with GRU neural network (SqueezeNetIRGRU) is proposed. In order to enhance the learning efficiency, ELU function is used as the activation function. To avoid the disappearance of gradients when the network layer is too deep, a deep residual network is introduced to guarantee the stability of the model, GRU neural network that can memorize the important past features is utilized. Experiments were performed on the Cafir10 and GTSRB datasets, and their recognition accuracy rates are above 99.13% and 88.25%respectively. The experimental results show that the SqueezeNetIRGRU model not only reduces the parameter amount greatly, but also its convergence, stability and recall rate are all much better than others.

Key words: SqueezeNet, GRU neural network, deep residual network, recognition accuracy, stability