• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (03): 528-536.

• 人工智能与数据挖掘 • 上一篇    下一篇

考虑无症状和变异者的SAIVR传染病模型

邓云峰,卢友军,梁燕军,左飞宇,付丽   

  1. (贵州民族大学数据科学与信息工程学院,贵州 贵阳 550025)
  • 收稿日期:2022-09-19 修回日期:2022-10-28 接受日期:2023-03-25 出版日期:2023-03-25 发布日期:2023-03-23
  • 基金资助:
    国家自然科学基金(62266012);贵州省教育厅自然科学研究([2022]015);黔科合基础(ZK[2021]016);贵州省省级科技计划([2020]1Y277,[2020]1Y263,[2019]1159);贵州省教育厅基金([2018]087);贵州民族大学校级基金(GZMU[2019]YB03)

A SAIVR epidemic model considering asymptomatic and variant patients

DENG Yun-feng,LU You-jun,LIANG Yan-jun,ZUO Fei-yu,FU Li   

  1. (School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China)
  • Received:2022-09-19 Revised:2022-10-28 Accepted:2023-03-25 Online:2023-03-25 Published:2023-03-23

摘要: 考虑无症状者、变异者的存在以及易感者通过其他方式直接变为免疫者等因素,在传统传染病模型的基础上建立了一个新的SAIVR传染病模型。根据SAIVR模型的传播规则,利用微分方程理论给出了该模型的传播动力学方程,分析了该模型的无病平衡点和地方病平衡点的存在性,利用下一代矩阵方法计算出该模型在无病平衡点处的基本再生数,根据Routh-Hurwitz判据得到了该模型在平衡点处的局部渐近稳定性条件,利用Lyapunov理论证明了模型的全局稳定性。仿真实验表明,考虑无症状者和变异者的SAIVR模型准确预测了传染病的爆发时间、爆发规模和消亡时间,有助于减少传染病在人群中的传播率,增加感染者、变异者的免疫率,有效控制SAIVR传染病的传播。

关键词: 传染病模型;平衡点;基本再生数;稳定性 ,

Abstract: Considering the existence of asymptomatic individuals, the existence of mutant individuals, and the direct transformation of susceptible individuals into immune individuals by other means, a new SAIVR infectious disease model is established based on the traditional infectious disease model. According to the propagation rules of the SAIVR model, the propagation dynamics equation of the model is given by using the differential equation theory, and the existence of the disease-free equilibrium point and the endemic equilibrium point of the model is analyzed. The next-generation matrix method is used to compute the basic reproduction number of the model at the equilibrium point of the disease. According to the Routh-Hurwitz criterion, the local asymptotic stability condition of the model at the equilibrium point is obtained, and the global stability of the model is proved by Lyapunov theory. Simulation experiments show that the addition of asymptomatic individuals and mutant individuals can affect the outbreak time, outbreak scale, and death time of infectious diseases. It can effectively control the spread of SAIVR infectious diseases by reducing the transmission rate of infectious diseases in the population and increasing the immunity rate of infected persons and mutants.

Key words: epidemic model, equilibrium point, basic regeneration number, stability