计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (03): 465-472.
李昭阳,伏云发
LI Zhao-yang,FU Yun-fa
摘要: 运动想象MI是基于想象的脑机交互BCI中常用的任务,但MI不易习得和控制,且存在“BCI盲”现象,使得该类BCI的实用化受限。
针对较易习得和控制的视觉想象VI任务进行识别,旨在构建基于VI的BCI(VI-BCI)。招募了15名被试者参加2种动态图像的视觉想象任务并采集脑电EEG数据;然后采用EEG微状态方法研究了这2种VI任务诱发的EEG在微状态时间参数上的差异,并选用差异显著的微状态时间参数构建特征向量;最后采用SVM对2类VI任务进行识别。结果显示提取微状态特征所取得的最高、最低和平均分类精度分别为90%,56%和80.6±2.58%。表明微状态方法可以有效提取VI相关EEG特征并得到具有可比性的分类精度,可望为构建相对较新的在线VI-BCI提供思路。