• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (04): 746-752.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于组合核函数的径向基过程神经网络及其在示功图诊断中的应用

李晶晶,许少华   

  1. (山东科技大学计算机科学与工程学院,山东 青岛 266590)
  • 收稿日期:2019-12-05 修回日期:2020-06-19 接受日期:2021-04-25 出版日期:2021-04-25 发布日期:2021-04-21

A radial basis function process neural network based on the combined kernel function and its application in indicator diagram diagnosis

LI Jing-jing,XU Shao-hua   

  1. (College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China)

  • Received:2019-12-05 Revised:2020-06-19 Accepted:2021-04-25 Online:2021-04-25 Published:2021-04-21

摘要: 针对复杂时间信号动态模式分类问题,提出了一种基于局部核函数与全局核函数组合的径向基过程神经网络(RBFPNN)模型。考虑时间信号过程特征的多样性和复杂性,以及核函数对信号分布形态特征的局部与全局表征能力,通过将具有全局性质的多项式核函数与具有局部性质的高斯核函数进行线性叠加,构成组合核函数,以此建立一种新的径向基过程神经网络,从信息模型上改善RBFPNN对动态样本复杂过程特征的抽取和记忆性质,提高网络对时间信号特征的辨识能力。分析了基于RBFPNN的性质,建立了基于混沌遗传算法CGA的模型参数优化算法。以基于示功图的往复运动机械工作状态诊断为例,实际资料处理结果验证了模型和算法的有效性。

关键词: 动态模式识别;径向基过程神经网络;组合核函数;混沌遗传算法 

Abstract: To solve the problem of dynamic pattern classification of complex time signals, this paper proposes a new radial basis function process neural network (RBFPNN) model, which combines local kernel functions and global ones. Considering the diversity and complexity of time signals, the kernel functions have the local and representation ability for signal distribution morphology. By linear superposition of polynomial kernel functions for global properties with Gaussian kernel functions for local pro- perties, the new combined kernel function is composed and a new RBFPNN model is constructed, which improves the information model's extraction and memorization properties for dynamic sample complex process, and enhances the recognition capability of RBFPNN for time signal feature.  This paper analyzes the nature of the new RBFPNN model, and constructs the model parameter optimization algorithm based on CGA. By taking reciprocation machinery working status diagnosis based on indicator diagram as an example, the actual data processing results show the effectiveness of the model and the algorithm.


Key words: dynamic pattern recognition, radial basis process neural network, combined kernel function, chaos genetic algorithm