• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (04): 753-760.

• 人工智能与数据挖掘 • 上一篇    

基于深度学习的集群式供应链应急物资需求预测研究

薛红,徐锐迪,王圆,廖智峰,徐卓然   

  1. (北京工商大学计算机与信息工程学院,北京100048)
  • 收稿日期:2020-02-11 修回日期:2020-06-12 接受日期:2021-04-25 出版日期:2021-04-25 发布日期:2021-04-21
  • 基金资助:
    北京市社会科学基金(18GLB036);教育部人文社会科学研究项目基金(09YJA630003);北京市自然科学基金(9162002)

Demand forecasting of cluster supply chain emergency materials based on deep learning

XUE Hong,XU Rui-di,WANG Yuan,LIAO Zhi-feng,XU Zhuo-ran   

  1. (College of Computer Science and Information Engineering,Beijing Technology and Business University,Beijing 100048,China)
  • Received:2020-02-11 Revised:2020-06-12 Accepted:2021-04-25 Online:2021-04-25 Published:2021-04-21

摘要: 在突发事件和大数据情景下,建立基于数据流模糊C均值聚类算法的集群式供应链应急物资需求重要度决策算法,有助于辨识集群式供应链子系统应急物资需求的重要程度。针对集群式供应链中各子供应链之间的耦合特性和预测指标的快速变化数据流特征,提出基于长短期记忆网络的集群式供应链应急物资需求动态预测算法,提取集群式供应链多个子系统应急物资需求参数的时序特征,动态地、分布地对互联大系统的应急物资需求不确定性进行系统辨识估计。仿真实验结果表明了基于长短期记忆网络的集群式供应链互联大系统应急物资需求动态预测算法的可行性和精确性。

关键词: 需求预测, 物资需求重要度, 长短期记忆网络算法, 集群式供应链, 应急物资

Abstract: In the case of emergencies and big data, the importance decision algorithm of emergency material demand based on data stream fuzzy C-means clustering algorithm is established to identify the importance of emergency material demand for the cluster supply chain subsystem. For the coupling cha- racteristics between the cluster supply chain subsystems and fast changing data stream characteristics of prediction indexes, the dynamic forecasting algorithm of emergency material demand based on the long short-term memory network is proposed for cluster supply chain to extract the time series characteristics of emergency material demand parameters from multiple subsystems of cluster supply chain. The system identification and estimation for the uncertainties of emergency material demand of the interconnected large-scale system are carried out dynamically. The simulation results prove the feasibility and accuracy of the dynamic prediction algorithm for emergency material demand based on the long short-term memory network in cluster supply chain.


Key words: demand forecasting, material demand importance, long short-term memory network algorithm, cluster supply chain;emergency material