计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (06): 1076-1080.
杨德志,柯显信,余其超,杨帮华
YANG De-zhi,KE Xian-xin,YU Qi-chao,YANG Bang-hua
摘要: 在搜索引擎、问答系统中利用深度学习的方法计算问题相似度是NLP领域研究的热点。结合卷积神经网络(CNN)和长短记忆网络(LSTM),提出了递归卷积神经网络(RCNN)问句相似度的计算方法,首先利用双向递归神经网络提取上下文信息,然后采用1D卷积神经网络将词嵌入信息与上下文信息进行融合;再利用全局最大池化提取关键信息来完成问句的语义表示;最后通过匹配层判断问句对的相似度。在Quora Question Pairs数据集上的实验结果表明,该相似度计算方法准确率为83.57%,优于其他方法。