樊琳1,2,张惊雷1,2
FAN Lin1,2,ZHANG Jing-lei1,2
摘要:
针对行人重识别应用中行人图像易受到光照、相似着装、拍摄角度影响而出现难分样本对,导致错误匹配的问题,提出一种联合损失结合孪生网络的行人重识别优化算法。首先利用残差卷积神经网络提取图像特征,并以焦点损失(Focal Loss)和交叉熵损失的联合损失对提取的特征进行监督训练,增加模型对难分样本对的关注度;然后采用余弦距离计算图像间的相似度实现行人的重识别;最后加入重排序算法降低误匹配率。采用Market-1501和DukeMTMC-reID数据集进行实验,结果表明,该算法的匹配率分别为91.2%和84.4%,平均精度均值(mAP)分别为85.8%和78.6%。