• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (09): 1584-1590.

• 计算机网络与信息安全 • 上一篇    下一篇

网络日志数据中条件因果挖掘算法的优化研究

刘云,肖添   

  1. (昆明理工大学信息工程与自动化学院,云南 昆明 650500)
  • 收稿日期:2020-01-15 修回日期:2020-07-15 接受日期:2021-09-25 出版日期:2021-09-25 发布日期:2021-09-27
  • 基金资助:
    云南省重大科技专项计划(202002AD080002)

A conditional causality mining algorithm  in network log data

LIU Yun,XIAO Tian   

  1. (Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
  • Received:2020-01-15 Revised:2020-07-15 Accepted:2021-09-25 Online:2021-09-25 Published:2021-09-27

摘要: 网络操作中收集了大量的系统日志数据,找出精确的系统故障成为重要的研究方向。提出一种条件因果挖掘算法(CCMA),通过从日志消息中生成一组时间序列数据,分别用傅里叶分析和线性回归分析删除大量无关的周期性时间序列后,利用因果推理算法输出有向无环图,通过检测无环图的边缘分布,消除冗余关系得出最终结果。仿真结果表明,对比依赖挖掘算法(DMA)和网络信息关联与探索算法(NICE),CCMA算法在处理时间和边缘相关率2个主要性能指标方面均有改善,表明CCMA算法在日志事件挖掘中能有效优化处理速度和挖掘精度。


关键词: 条件因果, 日志数据, 网络管理, 数据挖掘

Abstract: A large amount of system log data is collected during network operations, and finding out precise system faults has become an important research direction. This paper proposes a conditional causality mining algorithm (CCMA), which generates a set of time series data from log messages, and uses Fourier analysis and linear regression analysis to delete a large number of irrelevant periodic time series. Then, the causal inference algorithm is used to output the directed acyclic graph, and the final result is obtained by detecting the edge distribution of the acyclic graph and eliminating the redundant relationship. The simulation results show that the CCMA algorithm outperforms the dependent mining algorithm (DMA) and the network information correlation and exploration algorithm (NICE) in two main performance indicators such as processing time and edge correlation rate, which proves that the CCMA algorithm can effectively optimize the processing speed and mining accuracy in log event mining.

Key words: conditional causality, log data, network management, data mining