• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (09): 1591-1599.

• 图形与图像 • 上一篇    下一篇

基于胶囊网络的跨域行人再识别

杨晓峰1,2,张来福3,王志鹏3,萨旦姆1,邓红霞1,李海芳1   

  1. (1.太原理工大学信息与计算机学院,山西 晋中 030600;2.山西工程科技职业大学计算机工程学院,山西 晋中 030600;

    3.国网山西省电力公司电力科学研究院,山西 太原 030001)

  • 收稿日期:2020-07-14 修回日期:2020-09-03 接受日期:2021-09-25 出版日期:2021-09-25 发布日期:2021-09-27
  • 基金资助:
    国家自然科学基金(61873178,61976150);山西省重点研发计划(201803D31038);山西省面上自然科学基金(201901D111091);晋中市科技重点研发计划(Y192006);赛尔网络下一代互联网技术创新项目(NGII20181206);国内外作物产量气象预报专项(RH19100004);山西建筑职业技术学院教科研项目(JY-YB-1913)

Cross-domain pedestrian re-identification based on capsule network

YANG Xiao-feng1,2,ZHANG Lai-fu3,WANG Zhi-peng3,Saddam Naji Abdu Nasher1,DENG Hong-xia1,LI Hai-fang1

#br#
  

  1. (1.College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600;

    2.College of Computer Engineering,Shanxi Vocational University of Engineering Science and Technology,Jinzhong 030600;

    3.Electric Power Research Institute of State Grid Shanxi Electric Power Company,Taiyuan 030001,China)

  • Received:2020-07-14 Revised:2020-09-03 Accepted:2021-09-25 Online:2021-09-25 Published:2021-09-27

摘要: 行人再识别是在不同环境下再次对特定行人进行检索,近几年来受到国内外学者的广泛关注。目前行人再识别算法多采用局部特征与全局特征相结合的方法,在单一数据集上的训练和测试取得了非常好的成绩,但是在跨域测试中成绩并不理想,泛化能力较低。提出一种基于深度胶囊网络的跨域行人再识别方法,通过视角分类训练任务,模型可以学习图像中行人的有效特征,这些特征可以直接迁移到行人再识别任务中,缓解了行人再识别泛化能力不足的问题。实验结果表明,本文模型优于目前所有无监督学习行人再识别方法,具有良好泛化能力。

关键词: 行人再识别, 跨域, 视角, 深度胶囊网络

Abstract: Pedestrian re-identification searches for specific pedestrians in different environments, which has attracted widespread attention from domestic and foreign scholars in recent years. At present, pedestrian re-recognition algorithms mostly use a combination of local features and global features, and the training test on a single data set has achieved very good results. However, the results in the cross-domain test are not satisfactory, and the generalization ability is low. This paper proposes a cross- domain pedestrian re-recognition method based on deep capsule network. Through the view angle classification training task, the model can learn the effective features of the pedestrian in the image, and these features can be directly transferred to the pedestrian re-recognition task, alleviating the problem of insufficient generalization ability of pedestrian re-recognition. Experimental results show that this model is superior to all current pedestrian re-recognition methods based on unsupervised learning and has good generalization ability. 


Key words: pedestrian re-identification, cross-domain, visual angle, deep capsule network