计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (10): 1730-1735.
欧琦媛,祝恩
OU Qi-yuan,ZHU En
摘要: 近年来,多核聚类(MKC)在融合多源信息以提高聚类性能方面取得了显著进展。但是,以n表示样本数,O(n2)内存消耗和On3计算消耗限制了这些方法的实用性。重新设计了基于子空间分割的MKC公式,从而将其内存和计算复杂度分别降低到O(n)和O(n2)。在该算法(基于压缩子空间对齐的多核聚类算法CSA-MKC)中,通过对部分数据采样来重建整个数据集。具体而言,在该算法中,在信息融合过程中同时学习了共识采样矩阵,从而使生成的锚点集更适合于跨不同视图的数据重建。因此,改进了重构矩阵的判别性,并增强了聚类性能。此外,该算法易于并行化,通过GPU加速,在6个数据集上进行了测试,在时间上,该算法是数据规模的平方复杂度,在性能上,优于目前的先进算法。