• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (10): 1803-1809.

• 图形与图像 • 上一篇    下一篇

基于AT-NMS的Mask RCNN改进算法

王梅1,李东旭1,陈琳琳1,范思萌1,许传海1,杨二龙2


  

  1. (1.东北石油大学计算机与信息技术学院,黑龙江 大庆 163318;2东北石油大学石油工程学院,黑龙江 大庆 163318)
  • 收稿日期:2020-08-15 修回日期:2020-11-24 接受日期:2021-10-25 出版日期:2021-10-25 发布日期:2021-10-22
  • 基金资助:
    国家自然科学基金(51774090);黑龙江省高等教育教学改革重点委托项目(SJGZ20190011)

An improved Mask RCNN algorithm based on adaptive-threshold non-maximum suppression

WANG Mei1,LI Dong-xu1,CHEN Lin-lin1,FAN Si-meng1,XU Chuan-hai1,YANG Er-long2#br#

#br#
  

  1. (1.School of Computer and Information Technology,Northeast Petroleum University,Daqing 163318;

    2.School of Petroleum Engineering,Northeast Petroleum University,Daqing 163318,China)
  • Received:2020-08-15 Revised:2020-11-24 Accepted:2021-10-25 Online:2021-10-25 Published:2021-10-22

摘要: 大数据下的目标检测算法常常会出现目标漏检和重复检测问题,针对此问题提出一种基于自适应阈值-非极大值抑制AT-NMS
的Mask RCNN改进算法Mask RCNNAT-NMS。首先在ResNet基础上添加可变形卷积模块增强提取目标多层卷积特征的能力;
其次使用AT-NMS算法提取目标候选区域的深层信息;然后通过ROI Align  2次量化处理实现对目标更加精确的定位;最后通过3个分支实现目标实例分割、目标分类和目标边框回归。实验结果表明,在PASCAL-VOC2012和Indoor CVPR_09数据集上,相比于AT-NMS算法,Mask RCNNAT-NMS算法的重复检测率和目标漏检率均有所降低,并且识别精度有所提升。由此可见,Mask RCNNAT-NMS算法能够缓解因固定阈值引起的目标漏检和重复检测问题,且能在此基础上提高检测精度。


关键词: 目标检测;Mask RCNN, AT-NMS, ResNet

Abstract: Target detection algorithms under big data often have the problem of missed target detection and repeated detection. To solve this problem, Mask RCNNAT-NMS algorithm based on AT-NMS is proposed. Firstly, a deformable convolution module is added on the basis of ResNet to enhance the ability to extract multi-layer convolution features of the target. Secondly, 
the AT-NMS algorithm is used to extract the in-depth information of the candidate target area in the RPN (Regional Candidate Network) stage. Thirdly, the positioning of the target is more accurate through two quantitative processing of ROI Align. Finally, three branches are used to achieve target instance segmentation, target classification and target border regression. The experimental results on the PASCAL-VOC2012 and Indoor CVPR_09 data sets show that, compared with the mask RCNN algorithm, the Mask RCNNAT-NMS algorithm reduces the repeated detection rate and the target missed detection rate, and improves the recognition accuracy. It can be seen that Mask RCNNAT-NMS algorithm can alleviate the problem of target missing and repeated detection caused by fixed threshold, and improve the detection accuracy on this basis.


Key words: target detection, Mask RCNN, adaptive threshold non-maximum supression, residual network