• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (10): 1826-1832.

• 人工智能与数据挖掘 • 上一篇    下一篇

标签扩展的协同过滤推荐算法

陈海龙,闫五岳,孙海娇,程苗   

  1. (哈尔滨理工大学计算机科学与技术学院,黑龙江 哈尔滨 150080)
  • 收稿日期:2020-05-07 修回日期:2020-08-24 接受日期:2021-10-25 出版日期:2021-10-25 发布日期:2021-10-22
  • 作者简介:陈海龙 (1975),男,黑龙江宁安人,博士,教授,CCF会员(A1589M),研究方向为推荐算法和数据挖掘。
  • 基金资助:
    国家自然科学基金(61772160);哈尔滨市科技创新人才研究专项资金(青年后备人才A类,2017RAQXJ045)

A collaborative filtering recommendation algorithm based on tag extension

CHEN Hai-long,YAN Wu-yue,SUN Hai-jiao,CHENG Miao#br#

#br#
  

  1. (College of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)


  • Received:2020-05-07 Revised:2020-08-24 Accepted:2021-10-25 Online:2021-10-25 Published:2021-10-22
  • About author:CHEN Hai-long ,born in 1975,PhD,professor,CCF member(A1589M),his research interests include recommendation algorithm,and data mining.

摘要: 大多数利用标签与用户和项目之间关系的推荐算法,都要面临用户个体不同所导致的标签稀疏问题,不同的用户为项目所标注的标签会有所不同。针对由于用户标注标签的随意性而导致的用户标签和项目标签矩阵稀疏问题,提出了一种标签扩展的协同过滤推荐算法。该算法根据用户标注标签的行为计算基于标签的标签相似度,根据用户标注的标签语义计算基于标签语义的标签相似度,从用户行为和标签语义2个方面评估标签的相似度,并利用标签相似度来扩展每个项目标签,降低由项目与标签的关联关系产生的矩阵稀疏度。在MovieLens数据集上的实验结果表明,所提算法在精度上有所提高。



关键词: 协同过滤, 标签稀疏, 标签语义, 标签扩展

Abstract: Most recommendation algorithms that use the relationship between tags and users and items have to face the problem of sparse tags caused by different individual users. Different users will have different tags for the items. Aiming at the problem of sparse user-tag and item-tag matrix due to the randomness of user labeling, a collaborative filtering recommendation algorithm based on tag extension is proposed. The label similarity based on the label is calculated according to the user's labeling behavior, and the label similarity based on the label semantics is calculated according to the semantics of the label marked by the user. The similarity of tags is evaluated in terms of user behavior and label semantics, and the tag similarity is used to expand each item-tag to reduce the sparseness of the matrix generated by the association relationship between items and tags. Experimental results show that running the algorithm on the dataset MovieLens improves the accuracy.


Key words: collaborative filtering, tag sparse, tag semantics, tag extension