• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (10): 1833-1837.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于一维卷积神经网络的烟叶仓储霉变预测方法研究

翟乃琦,云利军,叶志霞,王一博,李亚召   

  1. (云南师范大学信息学院,云南 昆明 650000)
  • 收稿日期:2020-04-11 修回日期:2020-06-09 接受日期:2021-10-25 出版日期:2021-10-25 发布日期:2021-10-22
  • 作者简介:翟乃琦 (1996),男,山东济南人,硕士生,研究方向为物联网技术。
  • 基金资助:
    云南省应用基础研究计划重点项目(2018FA033);云南师范大学研究生科研创新基金(ysdyjs2019152)

A tobacco storage moldy prediction method based on one-dimensional convolutional neural network

ZHAI Nai-qi,YUN Li-jun,YE Zhi-xia,WANG Yi-bo,LI Ya-zhao   

  1. (School of Information,Yunnan Normal University,Kunming 650000,China)

  • Received:2020-04-11 Revised:2020-06-09 Accepted:2021-10-25 Online:2021-10-25 Published:2021-10-22
  • About author:ZHAI Nai-qi ,born in 1996,MS candidate,his research interest includes Internet of Things technology.

摘要: 针对烟叶存储期间的霉变问题,传统的防治措施效果欠佳,且已有的烟叶霉变预测模型的准确率较低,不能有效减少烟叶霉变现象的发生。为了提高预测烟叶霉变状态的准确率,提出了一种基于一维卷积深度神经网络(1D-CNN)的方法。以采集终端传感器数据为基础,对其进行标准化处理,得到模型训练特征,训练一个1D-CNN来预测烟叶霉变状态,优化网络结构,实验结果表明所提方法的预测准确率高于其它传统模型。最后,设计并实现了烟叶仓储霉变智能监测系统,实现了烟叶霉变的实时预测功能,取得了较好的效果。

关键词: 烟叶霉变, 卷积神经网络, 霉变预测

Abstract: Aiming at the problem of mildew during the storage of tobacco leaves, the traditional prevention and control measures are not effective, and the existing tobacco leaf mildew prediction model has low accuracy, which cannot effectively reduce the occurrence of tobacco leaf mildew. In order to improve the accuracy of tobacco leaf mildew state prediction, a method based on one-dimensional convolution deep neural network (1D-CNN) is proposed. Based on the collection of terminal sensor data, it is stan- dardized and processed to obtain the model's training features. A 1D-CNN is trained to predict the mildew state of tobacco leaves, and the network structure is optimized. The experimental results show that the proposed method has higher prediction accuracy than other traditional models. Finally, an intelligent monitoring system for tobacco leaf storage mildew is designed and implemented to realize the real-time prediction function of tobacco leaf mildew, and good results are achieved.


Key words: tobacco leaf mildew, convolutional neural network, mildew prediction