• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (10): 1864-1872.

• 人工智能与数据挖掘 • 上一篇    下一篇

融合作者合作强度与研究兴趣的合作者推荐

马慧芳1,2,3,胡东林1,刘宇航1,李志欣3   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;2.桂林电子科技大学广西可信软件重点实验室,广西 桂林 541004;

    3.广西师范大学广西多源信息挖掘与安全重点实验室,广西 桂林 541004)

  • 收稿日期:2020-06-08 修回日期:2020-08-27 接受日期:2021-10-25 出版日期:2021-10-25 发布日期:2021-10-22

Collaborator recommendation via integrating author’s  cooperation strength and research interest

MA Hui-fang1,2,3,HU Dong-lin1,LIU Yu-hang1,LI Zhi-xin3#br#

#br#
  

  1. (1.College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070;

    2.Guangxi Key Laboratory of Trusted Software,Guilin University of Electronic Technology,Guilin 541004;

    3.Guangxi Key Laboratory of Multi-Source Information Mining and Security,Guangxi Normal University,Guilin 541004,China)

  • Received:2020-06-08 Revised:2020-08-27 Accepted:2021-10-25 Online:2021-10-25 Published:2021-10-22
  • Supported by:
    国家自然科学基金(61762078,61363058);广西可信软件重点实验室研究课题(kx202003);广西多源信息挖掘与安全重点实验室开放基金(MIMS18-08);西北师范大学青年科研能力提升项目(NWNU-LKQN2019-2)

摘要: 合作者推荐是科研社交网络中的一个重要应用,为科研人员推荐适合的合作者有利于增强学术合作、提升作者的合作交流。为此,提出CRISI方法,从而有效地推荐与待推荐作者合作强度高且研究兴趣比较相似的同行,并且还考虑了作者间的合作强度(结构)、研究兴趣(属性)相似度和待推荐作者形成的社区紧密程度等信息。具体地,首先,基于作者与文献的关系构建作者合作关系属性图;然后,计算作者合作强度与研究兴趣相似度并据此构建双加权网络;再次,探测影响力高且合作强度大的作者节点作为种子;最后,设计分数k-core社区搜索方法找到与待推荐作者合作关系紧密的社区。实验结果表明,CRISI方法相比现有方法获得了显着的性能提升。

关键词: 合作强度, 研究兴趣相似度, 属性图, 分数k-core, 社区搜索


Abstract: Collaborator recommendation is an important application in research social networks. Recommending suitable collaborators for researchers is conducive to enhance academic cooperation and improve the collaborative exchanges among authors. To this end, CRISI method is proposed to effectively recommend peers with high intensity of cooperation and similar research interests. Our method considers the cooperation intensity (structure) between authors, the similarity of research interest (attribute), as well as the closeness of the community formed by the authors to be recommended. Specifically, firstly, an attribute graph of the author’s cooperative relationship is constructed based on the relationship between the author and the literature. Then, the author’s cooperation intensity and research interest similarity are calculated and the dual-weighted network is constructed accordingly. Thirdly, the author nodes with high influence and strong cooperation intensity are detected as seed. Finally, a fractional k-core community search method is designed to find a community that has a close working relationship with the author to be recommended. The experimental results show that 
CRISI method can achieve significant performance improvement over the existing methods.

Key words: cooperation strength, research interest similarity, attribute graph, fractional k-core, community search