计算机工程与科学 ›› 2021, Vol. 43 ›› Issue (10): 1873-1879.
许力,李建华
XU Li,LI Jian-hua
摘要: 在生物医学领域,以静态词向量表征语义的命名实体识别方法准确率不高。针对此问题,提出一种将预训练语言模型BERT和BiLSTM相结合应用于生物医学命名实体识别的模型。首先使用BERT进行语义提取生成动态词向量,并加入词性分析、组块分析特征提升模型精度;其次,将词向量送入BiLSTM模型进一步训练,以获取上下文特征;最后通过CRF进行序列解码,输出概率最大的结果。该模型在BC4CHEMD、BC5CDR-chem和NCBI-disease数据集上的平均F1值达到了89.45%。实验结果表明,提出的模型有效地提升了生物医学命名实体识别的准确率。