• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (01): 92-101.

• 图形与图像 • 上一篇    下一篇

改进小波软阈值函数在图像去噪中的研究应用

徐景秀,张青   

  1. (黄冈师范学院计算机学院,湖北 黄冈 438000)
  • 收稿日期:2020-05-18 修回日期:2020-09-06 接受日期:2022-01-25 出版日期:2022-01-25 发布日期:2022-01-13
  • 基金资助:
    湖北省大学生创新创业项目(201610514024);黄冈师范学院校级虚拟仿真项目(zx2018002)

Research and application of an improved wavelet soft threshold function in image denoising

XU Jing-xiu,ZHANG Qing   

  1. (School of Computer,Huanggang Normal University,Huanggang 438000,China)
  • Received:2020-05-18 Revised:2020-09-06 Accepted:2022-01-25 Online:2022-01-25 Published:2022-01-13

摘要: 常规小波软阈值去噪方法处理前后的图像小波系数有所差异,导致去噪后图像失真严重。为进一步提升去噪效果,提高去噪和细节保持能力,对阈值的选取方式和阈值函数进行改进。改进方法通过小波变换的每一级子带长度确定阈值,实现阈值自适应准确量化,改进软阈值函数采用双曲正切函数替换符号函数,对阈值绝对值范围内的小波系数应用非线性函数进行逐步压缩,使改进的阈值函数连续性更好,稳定性更强。实验结果表明,改进的小波软阈值去噪方法的峰值信噪比平均提升了48%,结构相似度平均提升了80.6%。相比常规小波阈值去噪方法,新改进的小波软阈值去噪方法在保留原始图像细节的基础上有效地抵制了噪声,图像质量提升明显。

关键词: 小波变换, 阈值函数, 峰值信噪比, 结构相似度, 噪声, 保留细节

Abstract: For the conventional wavelet soft threshold denoising method, the wavelet coefficients of the image before and after processing are different, resulting in serious image distortion after de- noising. In order to further improve the denoising effect and improve the ability of denoising and detail preserving, the threshold selection method and the threshold function are improved. The improved method determines the threshold value through the length of each sub-band of wavelet transform to realize the adaptive and accurate quantification of the threshold value. The improved soft threshold function uses the hyperbolic tangent function to replace the symbol function, and gradually compresses the wavelet coefficients within the absolute value range of the threshold by nonlinear function, so that the improved threshold function has better continuity and stronger stability. The simulation results show that the peak signal-to-noise ratio (PSNR) and structure similarity of the improved wavelet threshold denoising method are improved by 48% and 80.6% respectively. It is concluded that, compared with the conventional wavelet threshold denoising method, the new improved wavelet soft threshold denoising method can effectively suppress the noise while retaining the details of the original image, and the image qua- lity is significantly improved.

Key words: wavelet transform, threshold function, peak signal-to-noise ratio, structural similarity, noise, preserve details