计算机工程与科学 ›› 2020, Vol. 42 ›› Issue (11): 2088-2095.
肖继海,崔晓红,陈俊杰
XIAO Jihai,CUI Xiaohong,CHEN Junjie
摘要: 目前,脑网络分类是研究热点,研究者采用不同的方法从标签数据中提取并选择特征,以实现对数据的自动分类,但是从大量的标签数据中提取和选择最优的特征很费时。针对以上问题,提出一种脑网络相似度计算方法并构建基于无偏脑网络的聚类模型。首先,使用余弦相似度和子网络核来度量脑网络的属性相似度和结构相似度,然后将结构相似度和属性相似度集成为一个相似度矩阵,最后利用谱聚类实现脑网络聚类。对openfMRI数据库中的50名精神分裂症患者与49名正常对照组进行了聚类测试,结果显示,Rand指数为0.91,精确率为0.86,召回率为0.98,F1为0.92。研究表明提出的模型能较准确地计算脑网络相似性,表现出较高聚类性能。