计算机工程与科学 ›› 2022, Vol. 44 ›› Issue (08): 1506-1513.
周展朝1,2,刘茂福1,2,胡慧君1,2
ZHOU Zhan-zhao1,2,LIU Mao-fu1,2,HU Hui-jun1,2
摘要: 多跳机器阅读理解是自然语言处理领域最困难的任务之一,需要在多个段落之间进行推理。多跳机器阅读理解任务中的复杂问题一般由多个简单问题融合而成,可以通过分解复杂问题使模型更好地理解问题。因此,针对复杂多跳问题,提出了一种基于问题分解的多跳阅读理解模型。该模型首先将多跳问题分解为多个单跳问题,然后利用单跳阅读理解模型对其进行求解。将问题分解视作一个阅读理解任务:多跳问题是问题分解的上下文,而包含问题答案的证据段落则是问题。阅读理解任务捕捉了多跳问题和证据段落之间的交互语义信息,可以指导多跳问题中单跳问题的抽取。所提模型的BLEU值和Rouge-L值分别为71.48%和79.29%。实验结果表明,该模型对多跳机器阅读理解是有效的。