计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (05): 940-950.
• 人工智能与数据挖掘 • 上一篇
付接递1,2,李振东1,郭辉1
FU Jie-di1,2,LI Zhen-dong1,GUO Hui1
摘要: 基本鲸鱼优化算法在面对复杂优化问题时仍然存在易陷入局部极值、收敛速度慢和计算精度低等问题,为此提出一种基于教与学和逐维柯西变异的鲸鱼优化算法TCWOA。首先,选用Sobol序列对鲸鱼种群进行初始化操作,可使种群分布更均匀;其次,引入教与学算法中的教学策略替换鲸鱼优化算法中的随机搜索策略,避免搜索的盲目性,提高算法的收敛速度;再次,采用带惯性权重的逐维柯西变异对鲸鱼最优个体进行变异扰动,助其跳出局部最优解,增强算法的全局搜索能力;最后,与多种优化算法在10个标准测试函数上的对比分析,以及用TCWOA先优化BP网络参数,再预测波士顿房价的应用研究结果,表明了该优化算法的有效性和准确性。