计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (09): 1701-1710.
• 人工智能与数据挖掘 • 上一篇
李勇1,冯俐2,王霞3
LI Yong1,FENG Li2,WANG Xia3
摘要: 从电子病历中自动提取有价值的信息并进行疾病辅助诊断,对于临床决策支持、智慧医院建设等都有重要的理论和实践意义。然而,电子病历中病症数据存在分布不平衡问题,导致辅助诊断中部分疾病的病历数据量不足;同时,传统方法忽略了病历的异构性和多源情境信息,这些都会使疾病预测准确性欠佳。提出了一种基于异构图病历注意力网络的临床辅助诊断预测模型HCAD。首先,通过构建外部医学知识图谱,解决电子病历数据不平衡问题;其次,有效融合患者病情描述和生理记录等情境信息,通过设计节点级注意力机制和语义关系级注意力机制,来重点识别节点和不同语义关系信息的重要程度;最后,通过分层聚合得到具有高度代表性的患者节点向量表示,从而准确地进行疾病预测。在真实电子病历数据集上的实验表明,模型HCAD具有较高的可行性、有效性和可解释性,其F1值相比基准模型的平均提高了7.45%。