• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (09): 1691-1700.

• 人工智能与数据挖掘 • 上一篇    下一篇

融合GA-CART和Deep-IRT的知识追踪模型

郭艺,何廷年,李爱斌,毛君宇   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070) 
  • 收稿日期:2022-03-14 修回日期:2022-05-12 接受日期:2023-09-25 出版日期:2023-09-25 发布日期:2023-09-12
  • 基金资助:
    国家自然科学基金(61762078);甘肃省高等学校科研项目(2020B-089)

A knowledge tracing model fusing GA-CART and Deep-IRT

GUO Yi,HE Ting-nian,LI Ai-bin,MAO Jun-yu   

  1. (College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2022-03-14 Revised:2022-05-12 Accepted:2023-09-25 Online:2023-09-25 Published:2023-09-12

摘要: 随着深度神经网络的快速发展,基于深度学习知识追踪模型的优势逐渐显现。Deep-IRT将项目反应理论与动态键值记忆网络(DKVMN)相结合,增加了学生与练习之间的联系,却忽略了学习特征的影响。DKVMN-DT在DKVMN的基础上增加了基于CART决策树的行为特征预处理,但决策树仍是一种贪心算法。为优化CART带来的局部最优问题并加强学生能力与项目难度的联系,提出了一种将基于遗传算法的CART与Deep-IRT相融合的优化模型。首先对CART基于遗传算法进行2次优化,对学习者的学习行为特征进行预处理;然后计算交叉特征并融入DKVMN底层模型中;最后引入项目反应理论,根据学生能力与项目难度完成概率预测。实验结果表明,DKVMN-GACART-IRT模型的AUC值均优于原始模型,具有更好的预测性能。

关键词: 知识追踪, 决策树, 深度学习, 遗传算法, 深度项目反应理论

Abstract: With the rapid development of deep neural networks, the advantages of knowledge tracing models based on deep learning are gradually emerging. Deep-IRT combines item response theory with dynamic key-value memory networks (DKVMN), which increases the connection between students and exercises but ignores the influence of learning features. DKVMN-DT adds behavior feature preprocessing based on CART decision tree to DKVMN, but the decision tree is still a greedy algorithm. To optimize the local optimum problem caused by CART and strengthen the connection between student ability and exercise difficulty, a model combining CART based on genetic algorithm and Deep-IRT is proposed. Firstly, CART is optimized twice based on genetic algorithm, and the learning behavior characteristics of learners are preprocessed. Then, the cross characteristics are calculated and integrated into the underlying model of DKVMN. Finally, item response theory is introduced to predict the completion probability according to students' ability and exercise difficulty. The experimental results show that DKVMN-GACART-IRT model has better AUC values than the original model, and have better prediction performance. 

Key words: knowledge tracing, decision tree, deep learning, genetic algorithm, deep item response theory