• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (12): 2215-2226.

• 图形与图像 • 上一篇    下一篇

一种基于孪生网络的目标轮廓跟踪方法

李豪   

  1. (1.中国人民解放军75220部队,广东 惠州 516133;2.陆军工程大学指挥控制工程学院,江苏 南京 210007)

  • 收稿日期:2023-06-28 修回日期:2024-01-15 接受日期:2024-12-25 出版日期:2024-12-25 发布日期:2024-12-23

An object contour tracking method based on Siamese network

LI Hao   

  1. (1.Troop 75220 of the PLA,Huizhou 516133;2.College of Command & Control Engineering,Army Engineering University of PLA,Nanjing 210007,China) 
  • Received:2023-06-28 Revised:2024-01-15 Accepted:2024-12-25 Online:2024-12-25 Published:2024-12-23

摘要: 准确的尺度估计是目标跟踪中的挑战,现有方法存在计算复杂度高、超参数多和精度低的问题。针对以上问题,提出一个利用目标轮廓进行跟踪的孪生分割网络,它由孪生子网络和轮廓分割网络2部分组成,其优点是不需要根据先验知识预先定义锚框,减少了超参数。在此基础上,实现一种基于多点回归的目标轮廓跟踪方法,该方法用区域分类与轮廓回归对目标跟踪建模,能够同时得到正矩形框、旋转矩形框和轮廓等多种目标状态。该方法的跟踪过程是:首先,利用孪生子网络估计目标的初始矩形框;其次,通过轮廓分割网络将初始矩形框的特征向量变形为目标轮廓;最后,根据目标轮廓拟合最终矩形框。在OTB-2015(Success=70%)、VOT-2020(EAO=52%)、TrackingNet(AUC=78.9%)和LaSOT(AUC=64.1%)数据集上的实验结果表明:与现有先进的目标跟踪方法相比,本文提出的跟踪方法具有较优的跟踪性能。

关键词: 目标跟踪, 孪生网络, 轮廓分割, 多点回归, 尺度估计

Abstract: Accurate scale estimation poses a challenge in object tracking, with existing methods plagued by high computational complexity, numerous hyperparameters, and low accuracy. To address these issues, this paper proposes a Siamese segmentation network for object tracking utilizing object contours. This network consists of a twin sub-network and a contour segmentation network, offering the advantage of eliminating the need to predefine anchor boxes based on prior knowledge, thereby reducing the number of hyperparameters. Furthermore, a multi-point regression-based object contour tracking method is implemented. This method models object tracking through region classification and contour regression, enabling the simultaneous acquisition of various object states, including upright bounding boxes, rotated bounding boxes, and contours. The tracking process of this method is as follows: first, the Siamese sub-network is used to estimate the initial bounding box of the object; second, the feature vector of the initial bounding box is transformed into an object contour through the contour segmentation network; finally, the final bounding box is fitted based on the object contour. Experimental results on the OTB-2015 (Success=70%), VOT-2020 (EAO=52%), TrackingNet (AUC=78.9%), and LaSOT (AUC=64.1%) datasets demonstrate that the proposed tracking method outperforms existing advanced object tracking methods in terms of tracking performance.

Key words: object tracking, Siamese network, contour segmentation, multipoint regression, scale estimation