计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (12): 2271-2280.
• 人工智能与数据挖掘 • 上一篇
李易霖,周彪
LI Yi-lin,ZHOU Biao
摘要: 为了提高脑电信号中眼电伪迹去除的效果,提出一种结合快速独立成分分析(FastICA)和启发式小波阈值去噪(HWT)算法,并以模糊熵为眼电伪迹判别标准的眼电伪迹自动去除算法。首先,采用通道筛选算法对原始脑电信号进行降维处理,以提高计算效率;随后利用FastICA算法将筛选后的脑电信号分解为独立分量;其次,通过模糊熵分析识别含有眼电伪迹的独立分量;再次,采用HWT算法剔除该分量的眼电伪迹成分,保留有用的脑电信号;最后,进行逆小波变换和逆ICA重构,得到不含伪迹的脑电信号。通过在数据集BCI Competition IV上的实验验证了该算法。结果表明,相较于现有算法,所提算法在多个性能指标上均表现出色,信噪比(SNR)相较于现有基于峰度的伪迹识别算法提高约12%。
中图分类号: