• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (06): 1079-1089.

• 图形与图像 • 上一篇    下一篇

基于改进的YOLOv8模型对地下工程混凝土裂纹的检测识别

周丰峻,康怀强,高伸,李锋,孙云厚,高航,马芃晟   

  1. (军事科学院国防工程研究院,北京 100850)
  • 收稿日期:2024-02-05 修回日期:2024-03-18 出版日期:2025-06-25 发布日期:2025-06-26

Detection and recognition of concrete cracks in underground engineering based on improved YOLOv8 model

ZHOU Fengjun,KANG Huaiqiang,GAO Shen,LI Feng,SUN Yunhou,GAO Hang,MA Pengsheng   

  1. (Defence Engineering Institute,Academy of Military Sciences,Beijing  100850,China)
  • Received:2024-02-05 Revised:2024-03-18 Online:2025-06-25 Published:2025-06-26

摘要: 地下工程混凝土表面的裂纹是影响施工安全的关键因素之一,准确高效地对裂纹进行检测可以在一定程度上避免安全事故的发生。针对该问题,提出了一种基于改进YOLOv8模型对混凝土裂纹的检测识别方法。首先,改进YOLOv8的主干网络,加入膨胀卷积提升主干网络浅层目标的特征提取;其次,引入卷积块注意力模块CBAM强化对裂缝特征的捕捉能力;再次,改进YOLOv8的颈部网络结构解决小目标的特征过小和特征纹理弱难以学习的问题;最后,优化YOLOv8的颈部网络特征融合方式。实验结果显示,改进后的YOLOv8模型在精确率上提升了36.94%、在召回率上提升了49.18%、在mAP上提升了51.74%,表明改进后的模型更适合于复杂场景下的混凝土裂缝检测,同时也进一步提升了其在复杂环境下对小目标的识别性能。

关键词: 卷积网络, 注意力机制, 特征融合, 网络优化, YOLOv8

Abstract: Cracks on concrete surfaces in underground engineering are one of the key factors affecting construction safety. Accurate and efficient crack detection can help prevent safety incidents to a certain extent. To address this issue, an improved YOLOv8 model for cracks on concrete surfaces detection and identification is proposed. Firstly, the backbone network of YOLOv8 is enhanced by incorporating dilated convolutions to improve feature extraction for shallow-layer targets. Secondly, the  CBAM (convolutional block attention module) is introduced to strengthen the model’s ability to capture crack features. Thirdly, the neck network structure of YOLOv8 is modified to address the challenges of small target features being too miniature and weak feature textures making learning difficult. Finally, the feature fusion method in the neck network is optimized. Experimental results show that the improved YOLOv8 model achieves a 36.94% increase in Precision, a 49.18% increase in Recall, and a 51.74% increase in mAP(mean average precision). The enhanced model is better suited for concrete crack detection in complex scenarios and further improves the recognition performance for small targets in challenging environments.

Key words: convolutional network, attention mechanism, feature fusion, network optimization, YOLOv8