计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (01): 130-139.
陈兆波1,张琳1,2,马晓轩1
CHEN Zhaobo1,ZHANG Lin1,2,MA Xiaoxuan1
摘要: 视频异常检测是计算机视觉领域的重要研究内容之一,广泛应用于交通、公共安全等领域。然而,目前视频异常检测领域存在单个预测模型易受噪声干扰、单个重构模型存在泛化异常等问题。为了解决这些问题,提出了一种结合重构和预测模型的视频异常检测方法。在正常光流数据上训练具有注意力机制和内存增强模块的重构网络,再将重构后的光流和原始视频帧同时输入未来帧预测网络中,以重构光流为条件辅助帧预测网络更好地生成未来帧。为了提取更有效的特征,提出了一种残差卷积注意力模块SRCAM以促进重构和预测网络在全局和局部层面有效学习潜在空间的特征表示,从而增强模型对视频中异常事件的检测能力,提高模型的鲁棒性。通过在UCSD Ped2和CUHK Avenue这2个常用的视频异常检测数据集上进行的广泛的实验评估,表明了所提方法的有效性。