• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (7): 1205-1214.

• 计算机网络与信息安全 • 上一篇    下一篇

车边云协同的任务卸载调度和资源分配机制研究

赵鹏,邝祝芳   

  1. (中南林业科技大学计算机与信息工程学院,湖南 长沙 410004)
  • 收稿日期:2024-03-07 修回日期:2024-04-11 出版日期:2025-07-25 发布日期:2025-08-25
  • 基金资助:
    国家自然科学基金(62072477);湖南省自然科学基金(2024JJ5648);中国高校产学研创新基金(2021FNA04009)

Research on task offloading scheduling and resource allocation mechanism of vehicleedgecloud collaboration

ZHAO Peng,KUANG Zhufang   

  1. (College of Computer and Information Engineering,Central South University of Forestry and Technology,Changsha 410004,China)
  • Received:2024-03-07 Revised:2024-04-11 Online:2025-07-25 Published:2025-08-25

摘要: 在车辆边缘计算的基础上,车边云协同能够进一步实现车辆与云端之间的协同,为车辆提供更多的计算和存储资源,以实现更智能、安全和可靠的驾驶体验。在传统研究中,车辆用户的计算任务是独立、不可再分的,各任务之间没有依赖关系。而在当下的应用场景中,随着人工智能的发展,不少应用程序会由多个存在依赖关系的组件构成,对此类依赖任务计算需求的考虑是不可或缺的。因此,聚焦车边云协同的多车辆多任务的边缘计算场景,构建一个考虑车边云协同、任务依赖关系和任务优先级的任务卸载决策、任务调度决策和资源分配问题的模型,并以最小化系统能耗为目标,提出了一种基于优先级算法和双深度Q网络的联合优化算法JPDDO。首先,对多组依赖任务进行优先级排序;然后,对得到的任务队列通过双深度Q网络算法求解卸载决策、调度决策、计算频率和传输功率。仿真实验验证了该算法的有效性,并且在不同的网络环境和参数设置下都能取得比较低的能耗。


关键词: 车辆边缘计算, 车边云, 任务依赖, 任务优先级, 任务卸载与调度, 资源分配

Abstract: On the basis of vehicular edge computing,vehicleedgecloud collaboration can further en-able coordination between vehicles and the cloud,providing vehicles with additional computing and storage resources to achieve a smarter,safer,and more reliable driving experience.In traditional research,the computational tasks of vehicle users are assumed to be independent and indivisible,with no dependencies between tasks.However,in real-world applications,with the advancement of artificial intelligence,many applications consist of multiple interdependent components,making the consideration of such dependency-based computational demands essential.Therefore,this paper focuses on a multi-vehicle,multi-task edge computing scenario under vehicleedgecloud collaboration,constructing a model that accounts for vehicleedgecloud coordination,task dependencies,and task priorities to address task offloading decisions,task scheduling decisions,and resource allocation.With the goal of minimizing system energy consumption,a joint optimization algorithm JPDDO based on a priority algorithm and a double deep Q-network (DDQN) is proposed:Firstly,prioritizing multiple sets of dependent tasks;Secondly,solving the offloading decisions,scheduling decisions,computing frequency,and transmission power for the resulting task queue using the DDQN algorithm.Simulation results validate the effectiveness of the proposed method,demonstrating consistently low energy consumption under different network environments and parameter settings.

Key words: vehicle edge computing, vehicleedgecloud, task dependency, task priority, task offloading and scheduling, resource allocation