• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (7): 1193-1204.

• 计算机网络与信息安全 • 上一篇    下一篇

基于多视图图注意力机制的软件定义光传输网络路由优化算法

陈俊彦1,李欣梅1,朱昌洪2,肖微3   

  1. (1.桂林电子科技大学计算机与信息安全学院/软件学院/密码学院,广西 桂林 541004;
    2.桂林航天工业学院计算机科学与工程学院,广西 桂林 541004;3.国防科技大学计算机学院,湖南 长沙 410073)

  • 出版日期:2025-07-25 发布日期:2025-08-25
  • 基金资助:
    广西区自然科学基金(2020GXNSFDA238001);广西高校中青年教师科研基础能力提升项目(2020KY05033) 

A routing optimization algorithm for software-defined optical transport network based on multi-view graph attention mechanism

CHEN Junyan1,LI Xinmei1,ZHU Changhong2,XIAO Wei3   

  1. (1.School of Computer Science and Information Security & School of Software Engineering & School of Crytology,
    Guilin University of Electronic Technology,Guilin 541004;
    2.School of Computer Science and Engineering,Guilin University of Aerospace Technology,Guilin 541004;
    3.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Online:2025-07-25 Published:2025-08-25

摘要: 针对传统深度强化学习在软件定义光传输网络路由优化应用中收敛性能差、泛化能力弱等问题,提出了一种基于多视图注意力机制的深度Q网络MGATDQN算法来优化软件定义光传输网络的路由决策。首先,设计了基于深度强化学习的路由决策模型,为光网络每个输入的源目的地流量需求寻找最佳路由策略。其次,考虑到光网络中节点的稀疏连接特点,使用多视图注意力网络作为深度Q网络的网络模型,通过计算邻边的注意力权重,使强化学习智能体有意识地聚合重要的网络信息,提高模型的泛化能力。同时,结合多视图来提升图注意力网络模型的收敛速度和收敛稳定性。最后,基于Gym设计仿真路由实验,并在不同的网络拓扑中评估算法的负载均衡能力和泛化能力。实验结果表明,MGATDQN算法在软件定义光传输网络的路由优化中具有较好的收敛性能和负载均衡能力,并且能够泛化新的网络结构,即使在网络某些节点出现故障时仍然能保持较好的决策能力。

关键词: 光传输网络, 软件定义网络, 深度强化学习, 多视图图注意力机制

Abstract: To address issues such as poor convergence performance and weak generalization capability in traditional deep reinforcement learning (DRL) applications for routing optimization in software defined optical networks (SDONs),this paper proposes a multi-view graph attention mechanism-based deep Q-Network (MGATDQN) algorithm to optimize routing decisions in SDONs.First,a DRL-based routing decision model is designed to identify the optimal routing strategy for each source-destination traffic demand in the optical network.Second,considering the sparse connectivity characteristics of nodes in optical networks,a multi-view attention network is employed as the network model for the deep Q-Network (DQN).By computing attention weights for neighboring edges,the reinforcement learning agent can consciously aggregate critical network information,thereby enhancing the model’s generalization capability.Additionally,the integration of multi-view learning improves the convergence speed and stability of the graph attention network model.Finally,simulation-based routing experiments are conducted using the Gym framework,and the algorithm’s load-balancing capability and generalization performance are evaluated across different network topologies.Experimental results demonstrate that the MGATDQN algorithm exhibits superior convergence performance and load-balancing ability in SDON routing optimization.Moreover,it generalizes well to unseen network structures and maintains robust decision-making capabilities even when certain network nodes fail.

Key words: optical transport network, software-defined networking, deep reinforcement learning, multi-view graph attention mechanism