• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1628-1637.

• 图形与图像 • 上一篇    下一篇

基于特征解耦的双流网络模型全色锐化

张胜裕1,2,3,宋慧慧2,3,4


  

  1. (1.南京信息工程大学软件学院,江苏 南京 210044;
    2.南京信息工程大学江苏省大数据分析技术重点实验室, 江苏 南京 210044;
    3.南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044;
    4.南京信息工程大学自动化学院,江苏 南京 210044)
  • 收稿日期:2024-01-09 修回日期:2024-05-14 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    国家自然科学基金(61872189)

A dual-stream network based on feature decoupling for pan-sharpening

ZHANG Shengyu1,2,3,SONG Huihui2,3,4   

  1. (1.School of Software,Nanjing University of Information Science & Technology,Nanjing 210044;
    2.Jiangsu Key Laboratory of Big Data Analysis Technology,
    Nanjing University of Information Science & Technology,Nanjing 210044;
    3.Jiangsu Collaborative Innovation Center for Climate Change and Atmospheric Environment,
    Nanjing University of Information Science &Technology,Nanjing 210044;
    4.School of Automation,Nanjing University of Information Science & Technology,Nanjing 210044,China)

  • Received:2024-01-09 Revised:2024-05-14 Online:2025-09-25 Published:2025-09-22

摘要: 全色锐化的目的是将同一卫星生成的高分辨率全色图像和低分辨率多光谱图像融合起来,以生成高分辨率的多光谱图像。现有模型在融合多模态信息时未能充分挖掘不同模态之间的关联性和互补性,导致其未能充分发挥多模态信息的优势,影响全色锐化的质量。为了解决跨模态特征提取和融合不充分的问题,提出一种基于特征解耦的双流网络模型,从全色图像和多光谱图像中捕获到更丰富的特征信息。具体而言,该网络模型首先利用编码器将全色图像和多光谱图像的特征解耦为全局特征和局部特征,从而提高模型捕捉长程依赖和局部细节的能力。然后跨模态融合模块对这些特征进行域内和域间融合,使模型能够在不同层次上学习到更加丰富和全面的特征表示。接着,渐进融合模块逐步融合全局特征和局部特征,以获取更准确的特征表示。最后,将融合后的特征送入解码器生成高分辨率多光谱图像。在高分-2和WorldView-3上的实验结果表明,所提出的网络模型相较于许多现有的模型更具有优越性。

关键词: 全色锐化, 特征解耦, 跨模态特征融合

Abstract: The purpose of pan-sharpening is to fuse high-resolution panchromatic images and low-resolution multispectral images generated by the same satellite to generate a high-resolution multispect- ral image.Existing models fail to fully explore the correlation and complementarity between different modalities when fusing multimodal information,resulting in the inability to fully leverage the advantages of multimodal information,thus affecting the quality of pan-sharpening.To address the question of insufficient cross-modal feature extraction and fusion,this paper proposes a dual-stream network based on feature decoupling to capture richer feature information from panchromatic and multispectral images.Specifically,the proposed network utilizes an encoder to decompose the features of panchromatic and multispectral images into global features and local features,thereby improving the models ability to capture long-range dependencies and local details.Subsequently,a cross-modal feature fusion module integrates these features within and across domains,allowing the model to learn more comprehensive and rich feature representations at different levels.Then,a progressive fusion module gradually merges glo- bal and local features to obtain more accurate feature representations.Finally,the fused features are fed into the decoder to generate a high-resolution multispectral image.Experimental results on GaoFen-2 and WorldView-3 demonstrate the superiority of the proposed model compared to many existing models.

Key words: pan-sharpening, feature decoupling, cross-modal feature fusion