• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (7): 1262-1273.

• 图形与图像 • 上一篇    下一篇

用于全色锐化的金字塔特征解耦提取融合网络

林毅1,2,3,宋慧慧1,2,3   

  1. (1.南京信息工程大学计算机学院、网络空间安全学院,江苏 南京 210044;
    2.江苏省大数据分析技术重点实验室,江苏 南京 210044;
    3.大气环境与装备技术协同创新中心,江苏 南京 210044)

  • 收稿日期:2023-12-19 修回日期:2024-06-02 出版日期:2025-07-25 发布日期:2025-08-25
  • 基金资助:
    国家自然科学基金(61872189)

A pyramid feature decoupling extraction fusion network for pansharpening

LIN Yi1,2,3,SONG Huihui1,2,3   

  1. (1.School of Computer Science,School of Cyber Science and Engineering,Nanjing University of Information Science
     & Technology,Nanjing 210044;
    2.Jiangsu Key Laboratory of Big Data Analysis Technology,Nanjing 210044;
    3.Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Nanjing 210044,China)
  • Received:2023-12-19 Revised:2024-06-02 Online:2025-07-25 Published:2025-08-25

摘要: 全色锐化的目的在于将同一个遥感卫星获取的低分辨率多光谱图像LRMS及其对应的高分辨全色图像PAN进行融合,以生成高分辨率的多光谱图像HRMS。现有网络过于依赖基于深度学习的特征提取和融合能力而无法聚焦模态优势特征,忽略了多模态各自具有的特定表征,导致最终得到过多冗余特征。为了提取的特征可以独立表达期望表征、减少冗余信息从而更好融合2种模态的互补信息,提出了一种全新的用于全色锐化的金字塔特征解耦提取融合网络,以有效地增强图像的光谱和纹理细节的表示能力。首先,网络借鉴分治思想,将光谱和纹理信息进行解耦提取,设计不同注意力机制分别提取多模态的独特细节信息。其次,通过跨模态特征融合模块加强不同模态特征之间的交互,促进网络获得多模态的互补信息且去除冗余信息。最后,网络基于金字塔结构在多个空间尺度上进行了特征提取融合操作,获得了出色效果。在GaoFen-2和WorldView-3卫星数据集上进行了大量实验,结果表明提出的网络相较对比网络取得了显著的改进,对全色锐化任务有很大的帮助。

关键词: 遥感, 全色锐化, 金字塔, 特征解耦, 注意力机制

Abstract: The objective of pansharpening is to fuse low-resolution multispectral images (LRMS) and their corresponding high-resolution panchromatic images (PAN) acquired by the same remote sensing satellite to generate high-resolution multispectral images (HRMS).Existing networks overly rely on the feature extraction and fusion capabilities of deep learning,failing to focus on the advantageous features of each modality and neglecting the distinct representations inherent in multimodal data,which leads to excessive redundant features in the final output.To extract features that independently express desired representations,reduce redundant information,and better integrate the complementary information from both modalities,this paper proposes a novel pyramid feature decoupling extraction and fusion network for pansharpening,effectively enhancing the clear representation of spectral and texture details in images.First,inspired by the divide-and-conquer concept,the network decouples and separately extracts spectral and texture information,employing different attention mechanisms to capture the unique details of each modality.Then,a cross-modal feature fusion module strengthens the interaction between features of different modalities,enabling the network to acquire complementary information while eliminating redundancy.Finally,based on a pyramid structure,the network performs feature extraction and fusion operations at multiple spatial scales,achieving outstanding results.Extensive experiments conducted on the GaoFen-2 and WorldView-3 satellite datasets demonstrate that the proposed network significantly outperforms state-of-the-art approaches,providing sub-stantial improvements for the pansharpening task.

Key words: remote sensing, pansharpening, pyramid, feature decoupling, attention mechanism