• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1669-1678.

• 人工智能与数据挖掘 • 上一篇    下一篇

求解异构带容量车辆路径问题的带有注意力协作机制的分层解码器模型

郑明杰,曹霑懋   

  1. (华南师范大学计算机学院,广东 广州 510631)
  • 收稿日期:2024-03-25 修回日期:2024-07-15 出版日期:2025-09-25 发布日期:2025-09-22

A hierarchical decoder model with attention collaboration mechanism for solving the heterogeneous capacitated vehicle routing problem

ZHENG Mingjie,CAO Zhanmao   

  1. (School of Computer Science,South China Normal University,Guangzhou 510631,China)
  • Received:2024-03-25 Revised:2024-07-15 Online:2025-09-25 Published:2025-09-22

摘要: 现有求解带容量车辆路径问题(CVRP)的深度强化学习(DRL)方法主要用于处理同构车队,即车队都具有相同容量。然而,在面对更贴近现实的异构车队时,现有的DRL方法效果不佳。以最小化路径长度为目标,提出一种新型的DRL模型,用于求解具有不同容量约束的异构带容量车辆路径问题(HCVRP)。具体来说,提出一种由2类解码器构成的分层解码器模型(HDM):路由分配解码器(RAD)和序列构建解码器(SCD)。RAD将节点分配给合适的车辆以形成若干的组,SCD则对组内的节点顺序进行构建,以最小化总路径长度。此外,还设计了一种注意力协作机制(ACM),旨在促进SCD之间的信息共享,以优化各组节点顺序,从而提高整体解决方案的质量。实验结果表明,HDM模型超越了现有的最先进的深度学习方法,能够在合理的时间内提供与传统优化求解器相当的解决方案。

关键词: 异构带容量的车辆路径问题, 分层解码器模型, 路由分配解码器, 序列构建解码器, 注意力协作机制

Abstract: Existing deep reinforcement learning (DRL) methods for solving the capacitated vehicle routing problem (CVRP) are mainly designed for homogeneous fleets, where all vehicles have the same capacity. However, these DRL methods perform poorly when dealing with more realistic heterogeneous fleets. Aiming to minimize the route length, a novel DRL model is proposed to solve the heterogeneous capacitated vehicle routing problem (HCVRP) with different capacity constraints. Specifically, a hierarchical decoder model (HDM) consisting of two types of decoders is proposed: a routing  allocation decoder (RAD) and a sequence construction decoder (SCD). The RAD assigns nodes to appropriate vehicles to form several groups, while the SCD constructs the order of nodes within each group to minimize the total route length. In addition, an attention collaboration mechanism (ACM) is designed to promote information sharing among SCDs, optimizing the node order of each group and thus improving the quality of the overall solution. Experimental results show that the HDM model outperforms existing state-of-the-art deep learning methods and can provide solutions comparable to traditional optimization solvers within a reasonable time.



Key words: heterogeneous capacitated vehicle routing problem, hierarchical decoder model, routing allocation decoder, sequence construction decoder, attention collaboration mechanism