• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (9): 1679-1690.

• 人工智能与数据挖掘 • 上一篇    下一篇

多策略改进的山地瞪羚优化算法及其应用

李想1,刘杰2,覃涛1,李伟3,刘影4,杨靖1,5   

  1. (1.贵州大学电气工程学院,贵州 贵阳 550025;2.中国电建集团贵州工程有限公司,贵州 贵阳 550025;
    3.贵州大学农学院,贵州 贵阳  550025;4.贵州电网有限责任公司电网规划研究中心,贵州  贵阳  550001;
    5.贵州省“互联网+”协同智能制造重点实验室,贵州 贵阳  550025)
  • 收稿日期:2024-03-18 修回日期:2024-06-17 出版日期:2025-09-25 发布日期:2025-09-22
  • 基金资助:
    国家自然科学基金(61640014,61963009);贵州省教育厅创新群体(黔教合KY字[2021]012);贵州省科技支撑计划(黔科合支撑[2022]一般017,黔科合支撑[2023]一般411,黔科合支撑[2024]一般051);贵州省教育厅工程研究中心(黔教技[2022]043,黔教技[2022]040);中国电建集团科技项目(No.DJ-ZDXM-2020-19,No.DJ-ZDXM-2022-44);贵州大学贵州省双碳与新能源技术创新发展研究院开放课题(DCRE-2023-13)

A multi-strategy improved mountain gazelle optimization algorithm and its application

LI Xiang1,LIU Jie2,QIN Tao1,LI Wei3,LIU Ying4,YANG Jing1,5   

  1. (1.College of Electrical Engineering,Guizhou University,Guiyang 550025;
    2.PowerChina Guizhou Engineering Co.,Ltd.,Guiyang 550025;
    3.College of Agriculture,Guizhou University,Guiyang 550025;
    4.Grid Planning and Research Center of Guizhou Power Grid Co.,Ltd.,Guiyang 550001;
    5.Guizhou Key Laboratory of “Internet Plus” Collaborative Intelligent Manufacturing,Guiyang 550025,China)
  • Received:2024-03-18 Revised:2024-06-17 Online:2025-09-25 Published:2025-09-22

摘要: 针对山地瞪羚优化算法(MGO)收敛速度慢、收敛精度低和易陷入局部最优等问题,提出一种使用多策略改进的山地瞪羚优化算法MSIMGO。首先,采用佳点集初始化种群,提高初始种群质量;其次,融合黄金正弦策略提高收敛速度;然后,引入涡流效应改善后期种群多样性降低的情况;最后,采用柯西变异对最优瞪羚的位置进行扰动,提高了算法跳出局部最优的能力。通过与8种算法对8个基准测试函数和CEC2019基准测试函数进行寻优对比,结果表明MSIMGO具有更强的寻优能力,并且使用Wilcoxon秩和检验验证了MSIMGO的有效性。将MSIMGO应用于工程问题压力容器设计,结果表明MSIMGO处理实际工程问题的可行性和有效性。

关键词: 山地瞪羚优化算法, 佳点集, 黄金正弦策略, 涡流效应, 柯西变异

Abstract: To address issues such as slow convergence speed, low convergence accuracy, and proneness to falling into local optima in the mountain gazelle optimizer (MGO), a multi-strategy improved mountain gazelle optimizer algorithm(MSIMGO) is proposed. Firstly, a good point set is used to initialize the population, improving the quality of the initial population. Secondly, the golden sine strategy is integrated to enhance the convergence speed. Thirdly, the vortex effect is introduced to alleviate the reduction in population diversity in the later stage. Finally, Cauchy mutation is applied to perturb the position of the optimal gazelle, enhancing the algorithm’s ability to escape local optima. Comparative optimization experiments with 8 other algorithms on 8 benchmark  functions and CEC2019 benchmark functions show that MSIMGO has stronger optimization capability, and the effectiveness of MSIMGO is validated through the Wilcoxon rank-sum test. The application of MSIMGO to the engineering problem of pressure vessel design demonstrates its feasibility and effectiveness in handling practical engineering problems.

Key words: mountain gazelle optimizer, good point set, golden sine strategy, eddy current effect, Cauchy mutation